AMG:
a simple SOC balance model
used in France for decision support

Annie DUPARQUE¹, Jean-Louis DINH¹, Bruno MARY²a

and Alain BOUTHIER³, Bénédicte BLIN⁴, Pascal DENOROY²b, Flora GANTEIL⁴,
Sabine HOUOT²c, Maxime LEVERT¹ · Stéphanie SAGOT⁴, Robert TROCHARD³

1: Agro-transfert Ressources et Territoires, a.duparque@agro-transfert-rt.org
2a: INRA, Agro-Impact, Laon ; 2b: INRA, UMR TCEM, Bordeaux ; 2c: INRA EGC, Grignon
3: Arvalis Institut du Végétal
4: LDAR (Laboratoire d’Analyses et de Recherche de l’Aisne)
Content

1 - AMG: description

2 - AMG-Research: a research tool
 - Description
 - Evaluation on several databases

3 - Simeos-AMG: a decision support tool
AMG model is derived of Hénin & Dupuis (HD) model used to simulate SOC evolution on the long term (1945),

Characteristics of HD model:

- 2 compartments of SOC
- time step = 1 year
- only 2 parameters
- input information easily available at the field and the farm level

H&D model has been widely used in France as a support for decision making and formation until recently
Characteristics:

- **3 compartments of OC**
 - Fresh OC
 - Ca = Active SOC
 - Cs = Stable SOC

- **Time step = 1 year**

- **3 parameters:**
 - K1: humification coefficient
 - K: annual mineralization rate
 - Cs/Co: initial fraction of stable C

Fluxes and compartments of OC in the AMG model:

\[
C_t = CS + Ca \cdot \exp(-k \cdot t) \cdot K1 \cdot m / K \cdot (1 - \exp(-K \cdot t))
\]

Andriulo et al., 1999
Determination of FOM inputs

Main crops
Catch crops
Organic Amendments

Aerial residues
Roots

\[
\text{FOM} = \text{crop residues and organic wastes}\]
\[
m = f(\text{crop yield and amount of organic wastes; } C \text{ concentration})\]
\[
K1 = f(\text{nature and composition of FOM})\]
Inputs from crop residues (grain crops)

AMG: a simple SOC balance model used in France for decision support
A. Duparque, J.L Dinh, B. Mary and coll., France

I - AMG: description

DM harvested = grains

ADM potentially harvestable = straw

ADM always incorporated = stubble

Root dry matter

ADM always incorporated

= (ADM Total – DMgrain) * a’

Root DM = ADM Total * CR / (1-CR)

DMgrain = yield * DM content

ADM Total = DMgrain / HI

MSA total =ADM total = DMgrain / HI

MSA vegetative

ADM always incorporated = stubble

= (ADM Total – DMgrain) * a’

Root DM = ADM Total * CR / (1-CR)

AMG: a simple SOC balance model used in France for decision support
A. Duparque, J.L Dinh, B. Mary and coll., France

SOMPATIC Workshop 20-22 - 11-2013
1 - AMG: description

Inputs from crop residues (root crops)

DM total
ADM always incorporated = beet tops
ADM potentially incorporated = leaves
ADM unharvested
DM harvested = tuber
Root DM incorporated = rootlets

AMG: a simple SOC balance model used in France for decision support
A. Duparque, J.L Dinh, B. Mary and coll., France

SOMPATIC Workshop 20-22 - 11-2013 7
Determination of K1

3 main methods:

- **M1)** Model fitting versus observed data in LTE
- **M2)** Calibration with laboratory incubations
- **M3)** Calibration with biochemical analyses
Method M2
Asymptotic remaining $C \approx K1$

% Corg apporté

mineralized C

C remaining in the soil

C stable

temps (années)

$0 \quad 10 \quad 20 \quad 30 \quad 40$
Method M3

Biochemical index ISMO ≈ K1

More than 650 organic wastes of different types characterized

Lashermes et al., 2009
Calculation of mineralization rate K

$C = Ca + Cs$

$dC/dt = K1.m - K.Ca$

$K = K0 * f(clay) * f(lime) * f(T) * f(P-PET) * f(tillage)$
Content

1 - AMG: description

2 - AMG-Research: a research tool
 - Description
 - Evaluation on several databases

3 - Simeos-AMG: a decision support tool
AMG Research

* Data selection / extraction
* Calculation of:
 - Means
 - Standard deviations
 - Observed soil OC evolution
 - Inputs of C from residues and organic amendments
* Génération of CSV input file

* Calculation of:
 - Simulated soil OC evolution
 - Statistic parameters relative to the evaluation of the adjustment of the model to the data
* Optimisation of model parameters (MCMC process)
Example of SOC variations

Evolution of C, C3 and C4 stocks

AMG: a simple SOC balance model used in France for decision support
A. Duparque, J.L Dinh, B. Mary and coll., France
1) Evaluation on a database of soil analyses in arable farms

Years 1970-1997

391 fields selected

Analyzed 3, 4 or 5 times
Selection of the 391 fields

Linear regression versus time
Consistancy of the SOC variation kinetics
Slope = mean rate of change of SOC

Source : B. Mary
Model evaluation
Simulated vs observed rates of change

Fréquence
35%
30%
25%
20%
15%
10%
5%
0%
-2.0 -0.8 -0.4 -0.2 0.0 0.2 0.4 0.8 2.0
Rate of SOC change (t C/ha/an)

observed
simulated

Source: B. Mary

AMG: a simple SOC balance model used in France for decision support
A. Duparque, J.L Dinh, B. Mary and coll., France

SOMPATIC Workshop 20-22 - 11-2013
2) Evaluation on 9 long-term experiments

9 LTE with or without straw removal

- Ultuna (Sweden) 35 years
- Askov (Denmark) 31 years
- Askov 2 (Denmark) 20 years
- Khon Kaen (Thaïland) 26 years
- Issoudun (France) 32 years
- Serreslous (France) 24 years
- Doazit (France) 13 years
- Grignon (France) 18 years
- Boigneville (France) 12 years

Saffih and Mary, 2008
Simulated vs observed changes in SOC stocks due to straw addition

\[\text{Simulated (t/ha)} \]

\[\text{Observed (t/ha)} \]

\[\text{Simulated (% added C)} \]

\[\text{Observed (% of added C)} \]

Saffih and Mary, 2008

AMG: a simple SOC balance model used in France for decision support
A. Duparque, J.L Dinh, B. Mary and coll., France

SOPMATIC Workshop 20-22 - 11-2013
3) Evaluation on 23 long-term experiments in France

AMG project, (2009-2012)

Database of LTE available in France for testing SOM models

Selection of adequate LTE based on:

- Consistent evolution of SOM versus time
- Available information on crops, yields, residues and organic wastes management
- Number of measurement dates > 3
- Available information on sampling and/or tillage depths
Global evaluation

Simulated vs observed SOC stocks

First results

AMG: a simple SOC balance model used in France for decision support
A. Duparque, J.L Dinh, B. Mary and coll., France
Content

1 - AMG: description

2 - AMG-Research: a research tool
 - Description
 - Evaluation on several databases

3 - Simeos-AMG: a decision support tool
SIMEOS-AMG
GCEOS Project (2004-2011)

Cropping system with vegetables and potatoes in a sandy loam
Potatoes / Wheat / Peas / Sugar Beet / Carots

Current system:
- Plowing: 4 yrs/5
- Plowing depth: 28 cm
- Catch crops: 2 yrs/5

1st modif. of the system:
- 1 plowing suppressed: 3 yrs/5
- Plowing depth reduced to 22 cm

2nd modif. of system:
- + 10 T/ha of compost /5yrs
- + Catch crops: 3 yrs/5

3rd modif. of system:
- + 10 T/ha of compost /5yrs
- 1 plowing suppressed and plowing depth reduced to 22 cm

AMG: a simple SOC balance model used in France for decision support
A. Duparque, J.L Dinh, B. Mary and coll., France

SOMPATIC Workshop 20-22 - 11-2013
System “cereals + sugarbeet”
Loamy soil
Engrais verts : 1 année/5
Labour à 25 cm

Hypothesis on soil OM content
- 1,8 % of OM
- 2,2 % of OM

Hypothesis on soil tillage
- 80% Plough
- 40% Plough

Evolution of SOC Stocks 0-30 cm

Simulations by Simeos-AMG

Allowed straw exportation
The C \textit{org} reference concentration

Principle:
Avoiding the deterioration of soil organic status and related soil properties on the long term for each main agronomical situation

(type-situation = combination of a soil type and a cropping system type)

Corg reference concentration = Median value of the distribution of observed Corg concentrations for a type-situation in the region

System "cereals + sugarbeet"/
Loamy soil
Engrais verts : 1 année/5
Labour à 25 cm
A decision support tool for advisory services

Proportion of straw that might be exported without major risks at the field scale

Cas-types	Teneurs en C organique actuelles du sol (en g/kg)	Teneurs en MO actuelles du sol (en %)	Possibilités d'exportation des pailles sans apports organiques extérieurs	Possibilités d'exportation des pailles avec apports organiques extérieurs			
Système de culture	**Type de sol**	**Cas 1: 0 à 25 % de céréale**	Sables et limons	7 à 10	14 à 20	Teneurs en MO faibles et restitution organiques faibles	→ pas d'exportation
		+ pté - légumes - betteraves	1 céréale tous les 5 - 6 ans				
Cas 2: 25 à 40 % de céréale - colza	Sables, limons et limons argileux	8,5 à 10,5	17 à 21	Pas d'exportation	1 paille/2		
	+ betteraves - pté - légumes	1 céréale tous les 3 ans					
Cas 3: 40 à 60 % de céréale - colza	Sables et limons	7 à 9	14 à 18	Pas d'exportation	1 paille/3		
	+ betteraves - pté - protéagineux	8,5 à 10,5	17 à 21	1 paille/5	3 pailles/4		
	1 céréale tous les 2 ans	9 à 11	18 à 22	1 paille/3	3 pailles/4		
		Limons argileux	11 à 14	22 à 28	1 paille/3	3 pailles/4	
		Cranettes					
Cas 4: 60 à 70 % de céréale - colza	Sables	7 à 9	14 à 18	Pas d'exportation	1 paille/3		
	+ betteraves - protéagineux	8,5 à 10,5	17 à 21	1 paille/5	3 pailles/4		
	Exemple de rotation:	9 à 11	18 à 22	1 paille/3	3 pailles/4		
	betterave - blé - orge - colza - blé	10 à 12,5	20 à 25	1 paille/3	3 pailles/4		
	Argiles	11,5 à 14	23 à 28	1 paille/3	3 pailles/4		
	Cranettes				Toutes les pailles		

AMG: a simple SOC balance model used in France for decision support
A. Duparque, J.L Dinh, B. Mary and coll., France

SOMPATIC Workshop 20-22 - 11-2013 26
Application of Simeos-AMG to the diagnosis of SOC evolution at the territory scale

ABC’Terre Project (2013-2015)

Spatialized soil and cropping systems data

Spatialized diagnosis of LT variations of SOC stocks of agricultural area

BDAT
- Regional DB on cultural practices + Farms typology

SIMEOS-AMG
- Tool to rebuild crop rotations
- Agronomical Expertise
- Method to combine Corg x Soil Type
- Method to combine SdC x Soil type

Simulations of SOC evolution

AMG
- *Etat organique à t + 20 ans*

Combinaisons

- SdC X Sol x Stocks Corg localised at the territory scale *(current state)*

AMG: a simple SOC balance model used in France for decision support

A. Duparque, J.L Dinh, B. Mary and coll., France

SOMPATIC Workshop 20-22 - 11-2013
AMG Model: limitations and improvement prospects

- The **model does not apply to grasslands and other perennial crops** (miscanthus, ...)
- The **effect of soil moisture** (through a water balance indicator) **must be improved**
- The values of **humification coefficients of organic wastes** (manures, sludges, composts, slurry, ...) **must be updated** using a database of laboratory experiments

These issues are addressed in ongoing studies in France.

Future prospects

An interest for evaluating **AMG** on other datasets in Europe and comparing with other models, in this Sompatic group!
THANK YOU
FOR
YOUR ATTENTION