

Agri-Bio : de la connaissance à la performance

ENBio: Evaluation Agri-environnementale de systèmes de culture BIO

Mieux gérer l'azote en Agriculture Biologique

Aïcha Ronceux (Agro-Transfert R&T) Nicolas Beaudoin, Lucia Rakotovololona, Bruno Mary (INRA UMR AgroImpact)

Partenaires:

En association avec :

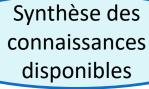
Programme

- 1. Les leviers pour gérer l'azote en AB : de nouvelles références pour la région
 - Introduire de l'azote
 - Limiter les pertes
- 2. Témoignage d'un agriculteur :
 - Le 07/06 : Jean-Luc Ortegat, agriculteur à La Neuville-sur-Oudeuil (60)
 - Le 08/06 : Témoignage de Richard Vilbert, agriculteur à Rubempré (80)
- 3. Echanges avec la salle

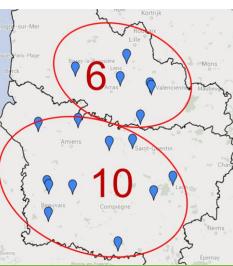
Quels leviers pour gérer l'azote en systèmes de grande culture biologique?

D'où viennent les informations présentées?

- Projet Agri-Bio (2013-2017)
- Projet ENBIO (2014-2017)


Production de nouvelles ressources pour accompagner l'AB en région

Test/simulation de pratiques



Suivi de pratiques

Identification de pratiques originales chez les agriculteurs

e cycle de l'azote, au cœur du raisonnement

Azote atmosphérique

Fixation symbiotique

Des dizaines voire des centaines de kg/ha

Cultures et Produits couverts organiques

Résidus

Minéralisation
des résidus =
quelques dizaines
de kg/ha

Azote contenu dans le sol

Minéralisation nette
Une centaine de kg/ha

Humus

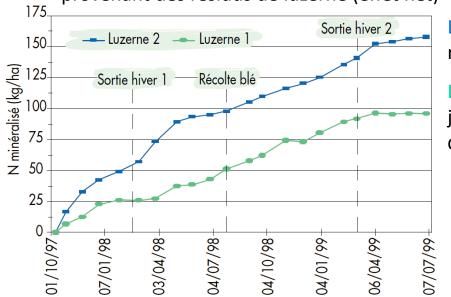
dans le

Lixiviation =
Plusieurs dizaines
de kg/ha

Quels leviers pour gérer l'azote en systèmes de grande culture biologique?

Fixer l'azote de l'air par les légumineuses

Par des cultures pluriannuelles


Luzerne, prairies temporaires

Résultats sur luzerne :

- En moyenne, + 200 kg d'N/ha sur 4 ans (essai longue durée INRA Clermont-Ferrand)
- Risques de pertes d'azote sur les deux intercultures suivantes

Minéralisation nette cumulée d'azote (kg N/ha) provenant des résidus de luzerne (effet net)

Luzerne 2 : laissée repousser 4 semaines

Luzerne 1 : fauchée juste avant destruction

Justes et al., 2001

En culture:

légumineuses à graines

Féverole, pois, lentille,...

Points-clés : maîtrise de l'enherbement dans les protéagineux

Maîtrise de l'enherbement par une stratégie de désherbage mécanique optimisée : *Suivi chez Jean-Luc Ortegat (60)*

Points-clés:

- Observations régulières de la parcelle
- Intervention dès que possible et autant que possible, désherbage de pré-levée

Semis 12/03

Pré-levée 31/03 Herse Treffler 2 feuilles 14/04 Herse Treffler 3 feuilles 1/2 18/04 Herse Treffler 25/04
Herse
Treffler
passage
perpendic
ulaire

8-10 feuilles 06/05 Herse Treffler

1ères fleurs 11/05 Bineuse Début floraison 21/05 Herse Treffler

Résultats : 95 à 98% d'efficacité

En culture : légumineuses à graines

Féverole + blé Pois + triticale Lentillon + épeautre

Points-clés : maîtrise de l'enherbement dans les protéagineux

Maîtrise de l'enherbement par les associations protéagineux-céréales : suivi sur 25 parcelles en région

Points-clés : équilibre entre compétition et complémentarité

- Choisir des parcelles avec un RSH faible
- Diversité de pratiques d'implantation (profondeur, modalités de semis)
- **Doses de semis :** 80% de la densité du protéagineux et 30% des densités de céréales, à adapter en fonction des conditions
- Nécessité de trier la production : à la ferme ou en coopérative

En culture : légumineuses à graines

Féverole + blé Pois + triticale Lentillon + épeautre

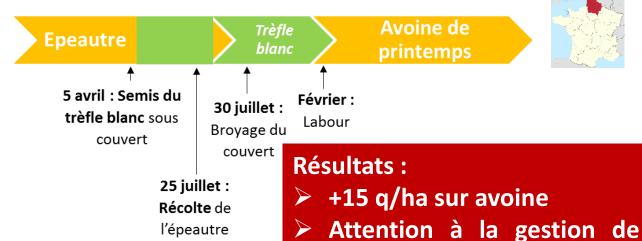
Points-clés : maîtrise de l'enherbement dans les protéagineux

Maîtrise de l'enherbement par les associations protéagineux-céréales : suivi sur 25 parcelles en région

Résultats: réduction voir suppression du désherbage mécanique tout en maintenant la pression adventices envisageable

En interculture :

engrais verts



Pois, vesce, lentille, trèfles,...

Points-clés:

- > Choix du couvert en fonction
- de l'historique de la parcelle (délais retour légumineuses, aphanomyces)
- **de la durée de l'interculture** (vesce, pois,... en IC courte/ trèfles blanc, violet en IC longue)
- Semis précoce

Exemple du trèfle blanc :

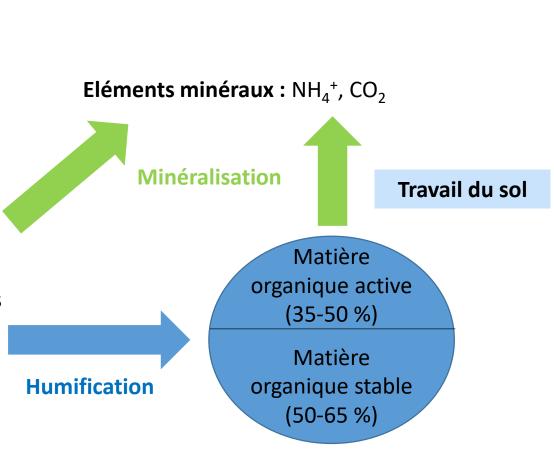
l'interculture

suivant

destruction du trèfle blanc !1

Quels leviers pour gérer l'azote en systèmes de grande culture biologique?

Favoriser la fertilité du sol sur le long terme


Favoriser la fertilité du sol sur le long terme

Restitution de biomasse :

- ✓ Maïs grain, colza, protéagineux, céréales à pailles restituées, prairies pluriannuelles
- ☑ Couverts d'interculture
- **⊠**Cultures légumières
- ⇒ À raisonner à l'échelle de la rotation

Matière organique restituée au sol (fertilisation, résidus de cultures,...)

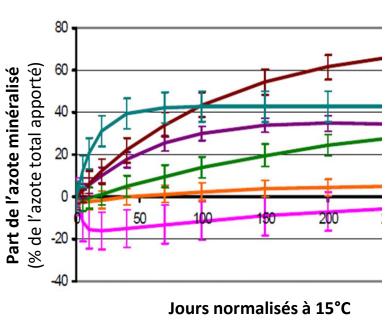
Apports de matière organique

MATIÈRE ORGANIQUE (HUMUS) DU SOL

D'après le modèle AMG

Quels leviers pour gérer l'azote en systèmes de grande culture biologique?

Optimiser les apports de fertilisants organiques


Optimiser les apports de fertilisants

organiques

Points-clés:

 les apporter aux bons moments en fonction de leurs caractéristiques et des objectifs visés

Classe 2: vinasses concentrées

Classe 1 : fientes de volailles, boues urbaines pâteuses, effluents de féculerie et de distillerie

Classe 3 : fumiers de volaille, boues urbaines déshydratées

Classe 4: fumiers de bovins

Classe 5 : composts de fumier de bovins, de déchets verts + boues

Classe 6 : composts (fumier de bovins pailleux, déchets verts)

Mesure de la minéralisation de l'azote au champ pour différents produits organiques (Bouthier, 2009)

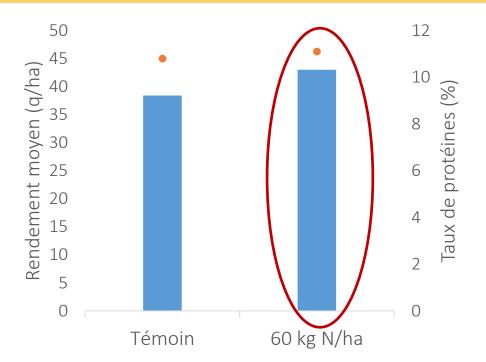
Fertilisants organiquesEffets sur le court terme

Intermédiaire

Risque de faim d'azote si apport tardif

Amendements organiques

Effets sur le long terme A apporter sur prairies ou couverts


Optimiser les apports de fertilisants

organiques

Points-clés:

- les apporter aux bons moments en fonction de leurs caractéristiques et des objectifs visés
- raisonner les apports en fonction du contexte

- Rendement (q/ha)
- Taux de protéines (%)

Un gain de rendement non systématique, notamment sur parcelles fortement enherbées, et qui ne compense pas forcément le coût des engrais

Effet moyen d'un apport de 60 kg N/ha sur blé Source : Chambre d'Agriculture de Seine-et-Marne, synthèse de 49 essais dans 9 régions de 1995 à 2014

Quels leviers pour gérer l'azote en systèmes de grande culture biologique?

Limiter les pertes en interculture

Systèmes AB et lixiviation d'azote

Le projet ENBIO / INRA AgroImpact

Quels enjeux?

- Evaluer les performances agri-environnementales de systèmes AB
- Quantifier les bilans N dans les systèmes à base de légumineuses
- Produire des références pour les systèmes AB grandes cultures (avec peu ou pas d'élevage)

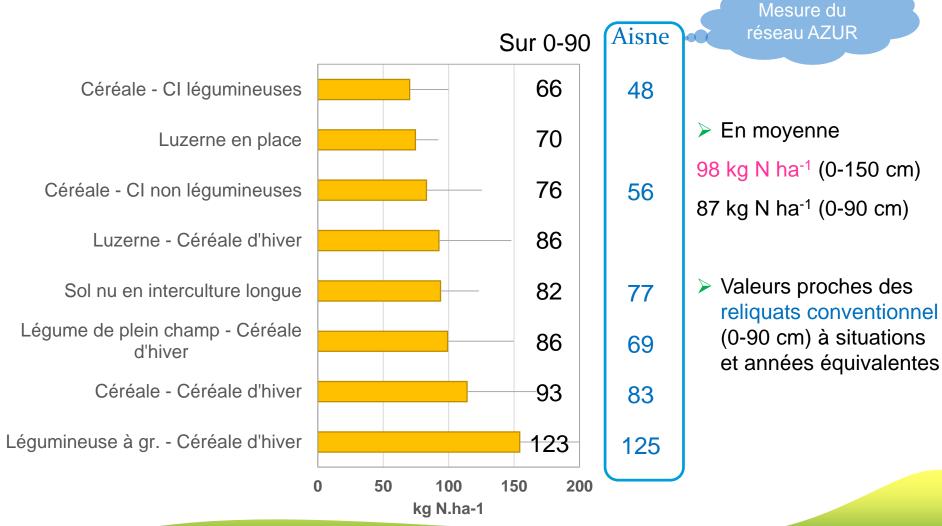
Systèmes AB et lixiviation d'azote

Le projet ENBIO / INRA AgroImpact

Quels objectifs?

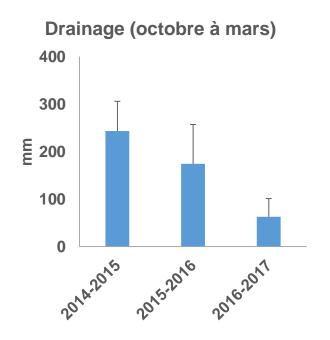
- Caractériser les pertes d'azote en systèmes de grandes cultures AB
- Identifier les déterminants des pertes de nitrate
- Associer étude expérimentale et modélisation

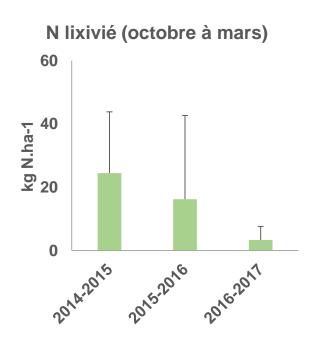
Un réseau de 35 parcelles en grandes cultures AB

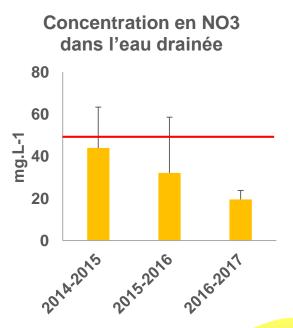


- > 9 agriculteurs Hauts-de-France
- > 3 saisons culturales : 2014 à 2017
- > 11 systèmes de grandes cultures
- 3-5 périodes par an : mi-novembre, mi-février, mi-mars, en juin et à la récolte
- Mesures des stocks et N minéral du sol (0-150 cm), des biomasses et des teneurs en N des culture

Des reliquats N minéral en entrée d'hiver importants en AB






Drainage, lixiviation et concentration en nitrate en AB

Mesure des stocks eau et N minéral

- + utilisation d'un modèle (LIXIM)
- → Calcul des flux de drainage et lixiviation

Drainage, lixiviation et concentration en nitrate en AB

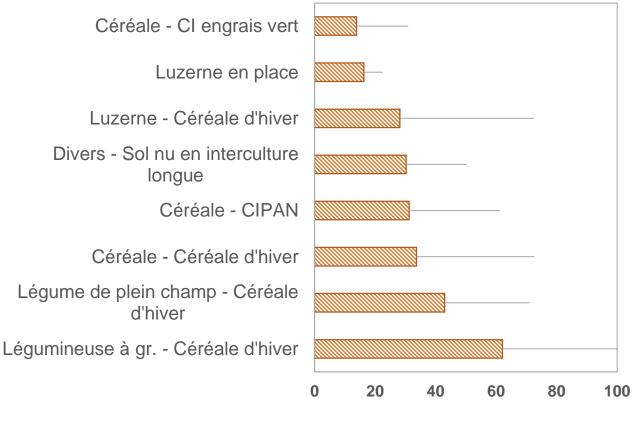
A l'échelle de la rotation culturale reconstituée : (3-4 parcelles * 3 ans)

Systèmes AB suivis :

- ightharpoonup N lixivié = 14 ± 11 kg N ha⁻¹ an⁻¹
- ➤ Concentration en nitrate = 31 ± 16 mg NO₃ L⁻¹

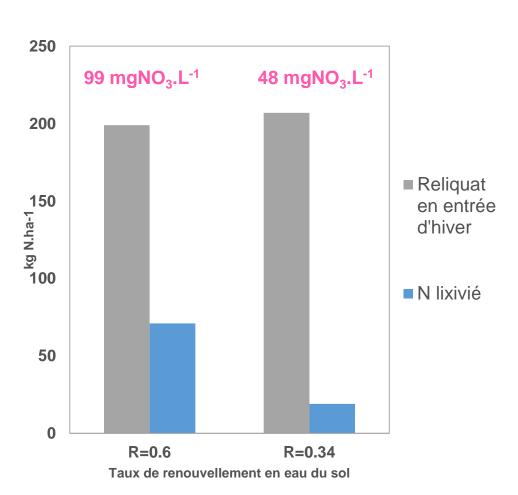
Sur le bassin Seine Normandie (Benoit et

al., 2014):


- \Box En AB : 53 ± 22 mg NO₃ L⁻¹
- \Box En AC : 106 ± 49 mg NO₃ L⁻¹

La lixiviation varie avec la succession culturale et la gestion de l'interculture

Concentration en nitrate dans la lame d'eau



- Pertes de nitrate entre 7 et 36 kg N ha⁻¹ an⁻¹
- Concentration en nitrate allant de 18 à 65 mg/L
- Concentration plus forte après légumineuses à graines

Le risque de lixiviation d'azote dépend de la sensibilité du sol au drainage

Pour une même situation culturale (Légumineuse à gr. – Céréale d'hiver)

Plus R est grand : renouvellement rapide de l'eau (sol filtrant)

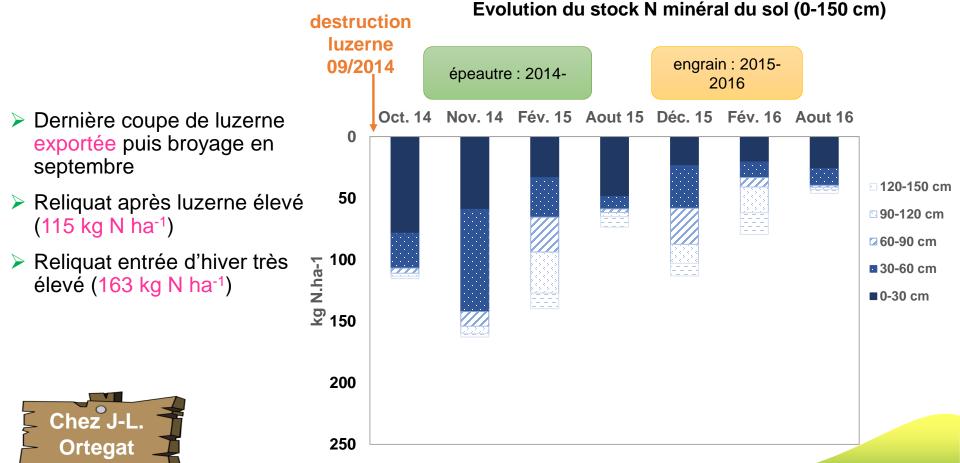
→ Plus il y a risque de lixiviation

Le taux de renouvellement = drainage / réserve en eau

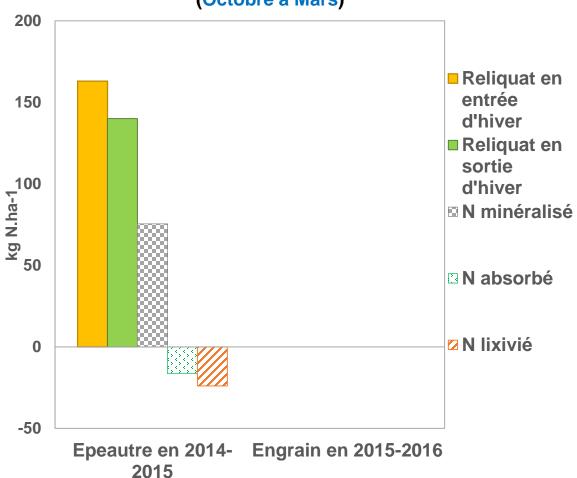
Les facteurs de risque :

- Précédent de légumineuses à graines
- Après destruction automnale de luzerne
- Faible couverture du sol en hiver
- Année climatique (drainage important)
- Sols superficiels, sensibles au drainage

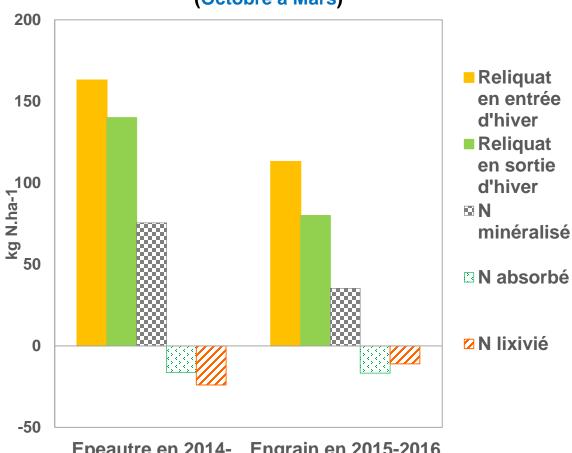
Les leviers d'action :


- Raisonnement de la rotation culturale
- ❖ Gestion de la destruction de luzerne : choix de la période, gestion des résidus, choix de la culture suivante
- Introduction de CIPAN en interculture courte ou longue

Deux cas pour illustrer les résultats du réseau de parcelles AB :


Une situation classique : céréale d'hiver après luzerne détruite en automne

Stock et flux N pendant la période de drainage (Octobre à Mars)


1ère année après luzerne :

- Forte minéralisation (75 kg N/ha)
- ➤ N lixivié = 24 kg N ha⁻¹
- Drainage = 228 mm
- Concentration = 48 mg NO₃.L⁻¹

Stock et flux N pendant la période de drainage (Octobre à Mars)

Epeautre en 2014- Engrain en 2015-2016 2015

2ème année après luzerne :

en entrée

d'hiver

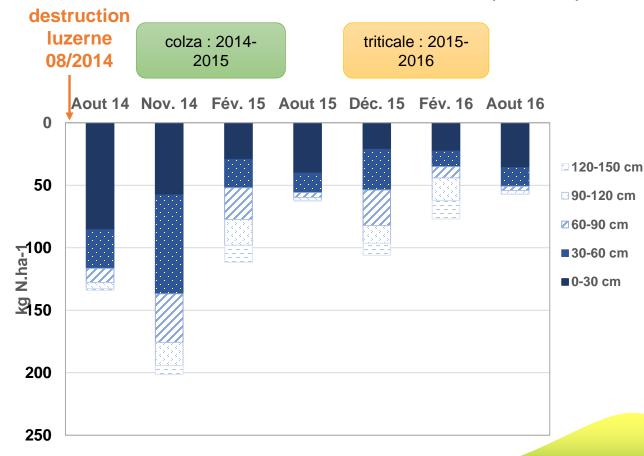
Reliquat en sortie

d'hiver

minéralisé

₽ N

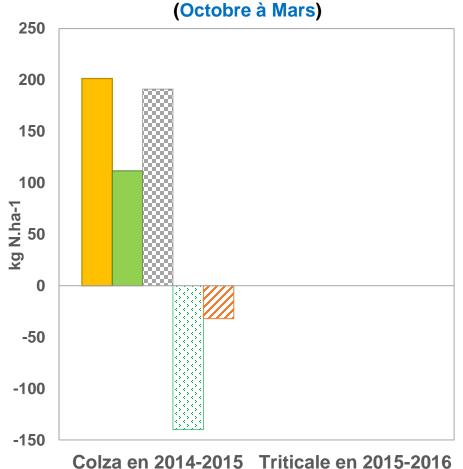
- ➤ N lixivié = 11 kg N.ha⁻¹
- Drainage = 101 mm
- Concentration = 47 mg NO₃.L⁻¹



Une situation alternative : colza après luzerne détruite en été

Evolution du stock N minéral du sol (0-150 cm)

- Dernière coupe de luzerne enfouie en été
- Reliquat après luzerne très élevé (134 kg N ha⁻¹)
- Reliquat entrée d'hiver très élevé (201 kg N ha-1)



Stock et flux N pendant la période de drainage

1ère année après luzerne : Reliquat en entrée

d'hiver

■ Reliquat

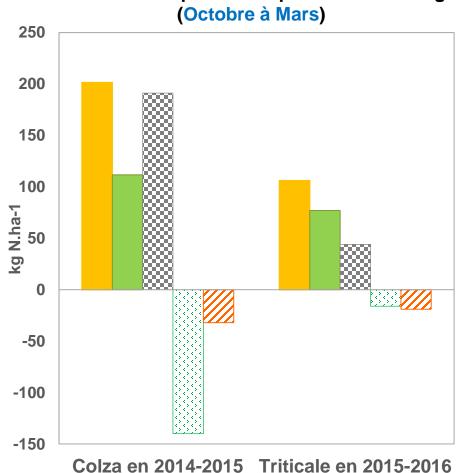
d'hiver

 \square N

en sortie

minéralisé

■ N absorbé


☑ N lixivié

- > très forte minéralisation (190 kg N/ha)
- > Forte absorption par le colza (140 kg N/ha)
- ➤ N lixivié = 32 kg N ha⁻¹
- Drainage = 244 mm
- Concentration = 61 mg NO₃.L⁻¹

Stock et flux N pendant la période de drainage

Reliquat en entrée 2ème année après luzerne : d'hiver ■ Reliquat

▶44 kg N ha⁻¹ minéralisé

➤N lixivié = 19 kg N ha⁻¹

➤ Drainage = 234 mm

➤ Concentration = 34 mg NO₃.L⁻¹

N lixivié

en sortie

minéralisé

□ N absorbé

d'hiver

 $\boxtimes N$

Les pistes d'amélioration des systèmes de grandes cultures AB

Les leviers d'action :

- Raisonnement de la rotation culturale
- ❖ Gestion de la destruction de luzerne : choix de la période, gestion des résidus, choix de la culture suivante
- ❖Introduction de CIPAN en interculture courte ou longue

Agriculteurs en AB

Test de scénarios par simulation

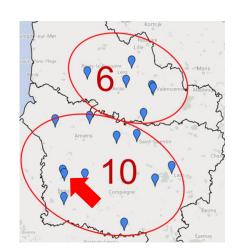
Conseillers agricoles

Projet Agri-Bio

Projet ENBIO

Témoignage de Jean-Luc Ortegat, agriculteur à La Neuville sur Oudeuil (60)

Caractéristiques de l'exploitation en 2013


Polyculture-élevage

- SAU: 205 ha en bio ou en conversion
- 35 vaches allaitantes
- 3 associés + main d'œuvre temporaire
- Sols : limons/limons à silex/argiles à silex

Historique

Historique de l'exploitation

2001

 Début de conversion sur les meilleures terres (55 ha)

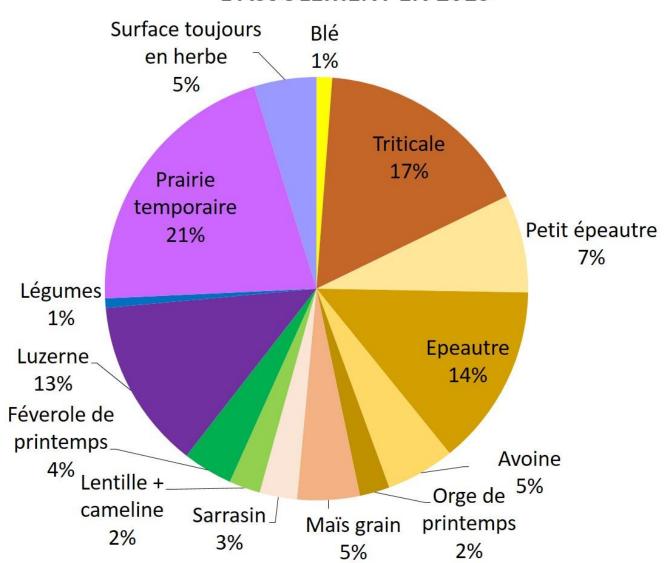
2011

• Fin de conversion sur toutes les terres labourables

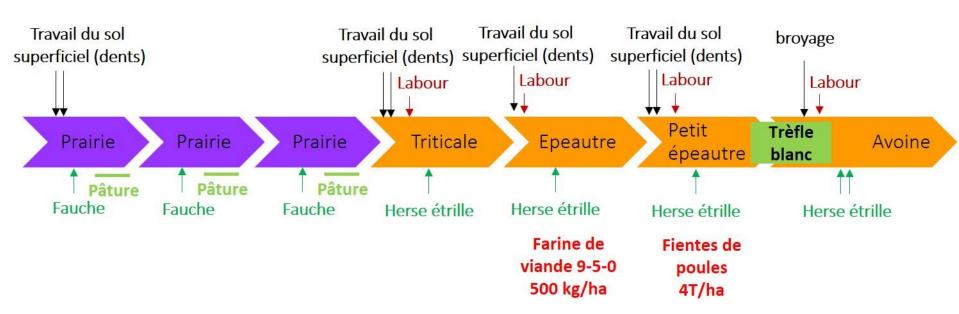
2012

 Conversion de l'atelier élevage et de 35 ha de prairies

Caractéristiques de l'exploitation


en 2013

L'ASSOLEMENT EN 2013


Rotation

Succession de cultures sur 2008-2014

Rotation

Changements en cours

 Volonté de tendre vers une autonomie complète en azote : légumineuses pluriannuelles, protéagineux et couverts de légumineuses

Témoignage de Richard Vilbert, agriculteur à Rubempré (80)

Caractéristiques de l'exploitation

en 2013

- Grandes cultures et légumes avec luzerne
- SAU: 224 ha dont 184 en bio ou en conversion
- 1,5 UTH permanents et 0,1 UTH temporaire
- Sols : limons battants
- Non labour

Historique

Historique de l'exploitation

1995

Opération réduction d'intrants

2005

Arrêt du labour, TCS, bas volume

• Focus sur l'activité biologique du sol

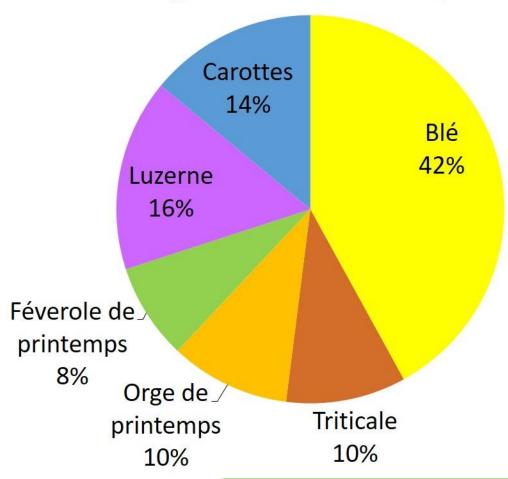
2010

 Conversion en bio sur 27 ha, toujours en non labour

2017

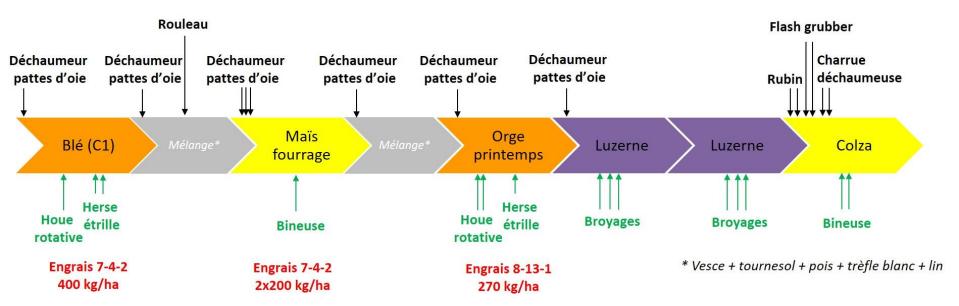
• Date prévue pour la fin de conversion

Caractéristiques de l'exploitation


en 2013

L'ASSOLEMENT BIO EN 2013

(phase de conversion)



Rotations

Succession de cultures sur 2010-2015

Rotation

- Associations de culture protéagineux + céréales pour maîtriser l'enherbement
- Volonté de « recharger » le sol en azote par :
 - La luzerne ou le trèfle violet (1 an) en fonction de la pression en chardon
 - Par la féverole
 - Par le trèfle blanc en interculture

Pour aller plus loin...

Des fiches et une synthèse sur les performances de systèmes de grande culture des Hauts-de-France issues du suivi des 15 fermes partenaires

Des fiches sur les pratiques mobilisables dans ces systèmes

2x 11 fiches sur les processus et pratiques déjà expérimentées

OdERA-Systèmes

Des pratiques originales issues des agriculteurs

Disponible sur http://www.agro-transfert-rt.org/projets/agri-bio/

Des outils specifiques pour accompagner la bio

Supports de formation

Des références agronomiques et économiques mutualisées

Pour aller plus loin...

MINI-CONFÉRENCES

MERCREDI 7 ET JEUDI 8 JUIN

Quels leviers pour la performance des systèmes biologiques en Agriculture Biologique ?

SYSTÈMES DE CULTURE BIOLOGIQUES DE LA RÉGION ET PERFORMANCES

par Aïcha Ronceux - Agro-Transfert RT Merc. 7 à 13h et jeudi 8 à 11h

COMMENT GÉRER LES VIVACES EN AGRICULTURE BIOLOGIQUE ?

par Élise Favrelière - Agro-Transfert RT Merc.7 et jeudi 8 à 14h

MIEUX GÉRER L'AZOTE EN AGRICULTURE BIOLOGIQUE par Lucia Rakotovololona et Nicolas Beaudouin -INRA AgroImpact

Merc.7 et jeudi 8 à 15h

ANALYSE ÉCONOMIQUE DE FERMES BIOLOGIQUES par Charlotte Glachant - CA 77 et Aïcha Ronceux - AGT-RT Merc. 7 et jeudi 8 à 16h

Conférence complémentaire

Merc. 7 et jeudi 8 à 12h

CARBONE, AZOTE, GAZ À EFFET DE SERRE, ÉTAT DES LIEUX EN BIO, CONVERSION ET CONVENTIONNEL par Bénédicte Autret, Nicolas Beaudouin et Bruno Mary - INRA AgroImpact

Pour aller plus loin...

- Synthèse des résultats du projet
- Public : agriculteurs, conseillers, enseignants, chercheurs, décideurs

Agri-Bio : de la connaissance à la performance

ENBio: Evaluation Agri-environnementale de systèmes de culture BIO

MERCI POUR VOTRE ATTENTION !!!

www.agro-transfert-rt.org/projets/agri-bio/

Partenaires:

En association avec :

