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A B S T R A C T

Reliable models predicting soil organic carbon (SOC) evolution are required to better manage cropping systems
with the objectives of mitigating climate change and improving soil quality. In this study, data from 60 selected
long-term field trials conducted in arable systems in France were used to evaluate a revised version of AMG
model integrating a new mineralization submodel. The drivers of SOC evolution identified using Random Forest
analysis were consistent with those considered in AMG. The model with its default parameterization simulated
accurately the changes in SOC stocks over time, the relative model error (RRMSE = 5.3%) being comparable to
the measurement error (CV = 4.3%). Model performance was little affected by the choice of plant C input
estimation method, but was improved by a site specific optimization of SOC pool partitioning. AMG shows a
good potential for predicting SOC evolution in scenarios varying in climate, soil properties and crop manage-
ment.

1. Introduction

Soils are fundamental to many provisioning and regulating eco-
system services, the prediction of which requires improving our un-
derstanding of soil processes and their modeling (Smith et al., 2015;
Vereecken et al., 2016). In agricultural systems, soil organic matter
(SOM) plays a crucial role in soil structure, quality and fertility for crop
production (Tiessen et al., 1994; Reeves, 1997). SOM also constitutes an
important reservoir of carbon (C) whose dynamics can significantly
impact the global C cycle (Heimann and Reichstein, 2008). Soil organic
carbon (SOC) can act as a sink or source of atmospheric C and has
therefore the potential of mitigating climate change by increasing C
storage in agricultural soils (Paustian et al., 1997, 2016), leading to the
recent “4 per mille” initiative (www.4p1000.org). Croplands, which are
depleted in SOC compared to grasslands and forests (Smith, 2008;
Poeplau et al., 2011), have a great potential for C sequestration (Lal and

Bruce, 1999; Smith, 2004).
SOC dynamics in arable systems is mainly driven by i) C inputs into

soils from crop residues and organic amendments generating newly-
formed SOM (Kuzyakov and Domanski, 2000; Mandal et al., 2007;
Maillard and Angers, 2014) and ii) C outputs due to SOM decomposi-
tion and erosion. The unbalance between these two opposite fluxes
determines soil C decline or accumulation. An accurate estimation of C
inputs and the consideration of the relevant drivers of SOM miner-
alization and stabilization are therefore needed to better predict SOC
stock evolutions, which are primarily under the influence of pedocli-
matic conditions and agricultural practices (Stockmann et al., 2013;
Dignac et al., 2017). SOC turns over slowly and variations in SOC stocks
can only be reliably detected on the mid or long-term in most cases.
There is consequently a need for long-term experiments (LTEs) to ca-
librate and validate mathematical models able to reproduce accurately
SOC dynamics and reliably predict future SOC evolutions.
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Numerous and various soil biogeochemical models featuring dif-
ferent levels of complexity have been designed to simulate SOC dy-
namics (Falloon and Smith, 2000; Manzoni and Porporato, 2009;
Campbell and Paustian, 2015). These models can be used to predict
SOC stock evolution, better understand their driving factors and test
methods and hypotheses regarding i) estimates of plant C inputs into
soils (Taghizadeh-Toosi et al., 2016; Keel et al., 2017), and ii) miner-
alization of SOM and its partitioning into functional C pools
(Zimmermann et al., 2007; Herbst et al., 2018). Among the diversity of
soil C models, simple process-oriented models may have some ad-
vantages compared to more complex ones or organism-oriented models
(Stockmann et al., 2013). They require a lower number of input vari-
ables and have been designed to simulate SOC evolutions with a re-
duced set of functions and parameters reflecting the main processes
driving SOC dynamics. They can be applied to a larger number of ex-
periments and/or over longer time and spatial scales. When correctly
calibrated, they may represent a good compromise between complexity
and reliability for general applications and could be used as decision
support tools to help managing SOC in arable systems.

The aim of this study was to enhance the reliability of AMG, a
simple model simulating soil C at annual time steps (Andriulo et al.,
1999), in predicting SOC stock evolution in topsoils from arable crop-
ping systems. AMG was previously shown to satisfactorily simulate the
effects of straw residue export on SOC in various cropping systems and
pedoclimatic conditions (Saffih-Hdadi and Mary, 2008) and the effects
of alternative arable systems (Autret et al., 2016). It was also used as a
tool for designing innovative cropping systems (Colnenne-David and
Doré, 2015; Dufossé et al., 2016). In this work, we evaluated a revised
version of AMG, in which was implemented a new model of SOM mi-
neralization calibrated for the prediction of N mineralization in arable
soils (Clivot et al., 2017). We hypothesized that the main identified
driving factors of soil organic N mineralization could apply for the
prediction of SOC mineralization due to a tight soil C and N coupling
(Zaehle, 2013) and could also improve the modeling of SOC dynamics.
We analyzed the impact of two major sources of uncertainty in SOC
modeling using several methods related to i) estimation of aboveground
(AG) and belowground (BG) plant C inputs and ii) partitioning of total
SOC between active and stable pools, and the relevance of these
methods for AMG model.

2. Material and methods

2.1. Experimental sites

In a first step, we compiled all the available LTEs carried out in
arable cropping systems in France by research teams or extension ser-
vices since 1970, in which SOC had been measured at several dates.
They represented 455 treatments spread over 53 sites. We then selected
the most reliable experiments by applying the following criteria:
number of replicates ≥3; number of measurement dates ≥3; experi-
ment duration ≥8 years; mean coefficient of variation of SOC mea-
surements ≤10%; rock fragment content nil or measured. The selection
leads to a reduced dataset of 60 treatments located in 20 sites (Fig. 1),
covering however a large diversity of pedoclimatic conditions (Table
S1), crop rotation types and practices (Table S2) representative of most
French arable systems.

The field experiments were carried out between 1970 and 2015,
lasting between 8 and 41 years (median value of 22 years) (Table 1).
The mean annual temperature observed during the field trials ranged
from 9.9 to 13.5 °C (median value of 11.0 °C). The annual precipitation
ranged from 637 to 1285 mm (median 753 mm) and potential evapo-
transpiration from 637 to 947 mm (median 721 mm). The field trials
exhibited contrasting soil physicochemical parameters. The clay con-
tent ranged from 43 to 308 g kg−1 (median 214 g kg−1), silt content
from 95 to 781 g kg−1 (median 528 g kg−1), sand content from 12 to
791 g kg−1 (median 140 g kg−1) and CaCO3 content of soils varied from

0 to 781 g kg−1 (median 0 g kg−1). Soil pH varied between 5.6 and 8.3
(median 6.8). Bulk density ranged from 1.20 to 1.52 g cm−3 (median
1.40 g cm−3). Initial soil organic C (SOC) stocks in the topsoils
(ploughed layer, 0–20 to 0–30 cm) varied widely, from 25 to 105 t C
ha−1 (median 44 t C ha−1).

Cropping systems encountered in the 60 treatments were cereal-
based rotations with legumes and/or oilseed crops (32% of the cropping
systems), grain maize/winter wheat rotations (27%), rotations with
silage maize (23%, including 3 out of 14 treatments in monoculture),
grain maize monocultures (10%), cereals/sugarbeet rotations with

Fig. 1. Location of the 60 field trials distributed among 20 sites in France. The
correspondence between site numbers and field-experiments is defined in
Tables S1 and S2.

Table 1
SOC stock variations, mean climatic conditions and soil physicochemical
parameters measured for the 60 field trials.

Units Min Max Median Mean SD

SOC stock variations
Considered soil depth cm 20 30 28 27 3
Initial SOC stock t C ha−1 25.1 115.3 43.8 53.5 21.2
SOC stock changes (final-

initial)
t C ha−1 −24.0 7.1 −1.2 −3.6 7.3

Experiment duration yr 8 41 22 24 12
Annual SOC stock change

rates
t C ha−1

yr−1
−1.01 0.45 −0.08 −0.20 0.33

Annual climatic conditions
Mean temperature °C 9.9 13.5 11.0 11.5 1.1
Cumulative Precipitation mm 637 1285 753 840 220
Cumulative PET mm 637 947 721 722 77
Precipitation-PET mm −290 595 37 117 252

Soil properties
Clay g kg−1 43 308 214 197 76
Silt g kg−1 95 781 528 488 176
Sand g kg−1 12 791 140 233 194
CaCO3 g kg−1 0 781 0 82 209
pH 5.6 8.3 6.8 7.0 0.9
C/N 7.8 13.0 9.1 9.4 1.1
Initial SOC content g kg−1 7.2 32.9 14.1 15.8 6.8
Bulk density g cm−3 1.20 1.52 1.40 1.38 0.08
Rock fragment % 0 39 0 7 10

PET: potential evapotranspiration, SOC: soil organic carbon.
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legumes and/or rapeseed (7%) and 1 treatment was a bare fallow soil.
Winter cover crops were occasionally grown in 10 treatments (17%) on
3 different sites. Straw residues were regularly exported in 38% of the
treatments and returned to soil in 62% of them. Exogenous organic
matters (EOM) were applied as manure or slurry in 11 treatments
(18%) from 5 different sites. Crops were grown with conventional N
rate applications providing a positive N balance in most situations.
Seven sites included variations in P or K fertilization rate but they did
not reveal major effects on yield or aboveground plant biomass pro-
duction. Conventional tillage with full inversion ploughing was con-
ducted in all treatments except 6 treatments from the BOIG-site where
soils were maintained under no-till. Past land use of the investigated
sites was cropland except the 5 treatments from the KERB-site which
were previously under sown grassland. Details on cropping systems can
be found in Table S2.

2.2. Soil physicochemical analyses

For each field trial, top soil layers were sampled in 3–4 replicates on
several occasions to determine soil physicochemical characteristics and
SOC stocks. The sampling depth varied between 20 and 30 cm (median
28 cm), and was equal or greater than the greatest ploughing depth
recorded during the study. For each soil characterization, several soil
cores were collected and mixed together to obtain a representative
composite sample. Particle-size distribution was determined on non-
decarbonated soil samples using the pipette method according to NF
ISO 11277. Soil CaCO3 content was quantified by a volumetric method
following NF ISO 10693 and soil pH was measured at a 1:5 soil/water
ratio (NF ISO 10390). Soil bulk density (BD) was determined either by
the cylinder method or the gamma radiation method (Blake, 1965) or
estimated according to the soil pedological class. The determination of
soil organic C (SOC) was performed by colorimetry after sulfochromic
oxidation (NF ISO 14235). Soil organic N (SON) was quantified fol-
lowing NF ISO 11261, by using the Kjeldahl method after sulfuric acid
digestion. In the later years, the dry combustion method was used to
determine total C and N at some sites. The two different methods were
shown to produce very close estimates of SOC and SON concentrations
(Dimassi et al., 2014) and were therefore not distinguished later.

The SOC stock (QC, expressed in t C ha−1) at the considered soil
depth z (m) was calculated as follows (Poeplau et al., 2017):

=QC z C z BD R( ) (1 ) 10f (1)

where C is the SOC content (g C kg−1), BD is the bulk density of fine
earth (g cm−3) and Rf the volumetric fraction of rock fragments
(> 2 mm) unaccounted for in the analysis.

2.3. Climatic data

For each experimental site, mean annual air temperature (°C) and
annual cumulative precipitation (mm) and potential evapotranspiration
(PET in mm, Penman, 1948) were calculated using daily data obtained
from the closest weather station (the distance between the experimental
sites and the weather stations varied from 0 to 55 km, on average
11 km).

2.4. AMG model

2.4.1. Model description
AMG is a model designed to simulate soil C dynamics at an annual

time step (Andriulo et al., 1999; Saffih-Hdadi and Mary, 2008). The
model considers three organic matter (OM) compartments: fresh OM
(FOM) coming from crop residues or organic amendments which can be
decomposed or humified, and SOM which is divided into active (CA)
and stable C pools (CS). Humified FOM is allocated to CA, which is af-
fected by the mineralization process. CS is considered completely re-
calcitrant to mineralization during the prediction time (< 100 yrs).

AMG can be described by this set of equations:

= +QC QC QCS A (2)

=dQC
dt

m h kQCA

i
i i A

(3)

where QC is the total SOC stock (t ha−1), QCA and QCS are the C stocks
of the active and stable C pools (t ha−1) respectively, mi is the annual C
input from organic residue i (t ha−1 yr−1), h is its humification coef-
ficient (the fraction of C inputs which is incorporated in SOM after 1
year) and k is the mineralization rate constant of the active C pool
(yr−1). The model allows simulating separately the C originating from
C3 or C4 crops using 13C natural isotopic abundance measurements
(Appendix A).

2.4.2. SOC pool partitioning
In the default parameterization, the initial proportion of the stable

pool (CS/C0) was set at 65% of total C for conditions of land use with a
long-term arable history (Saffih-Hdadi and Mary, 2008). In the case of
arable soils with a long-term grassland history, CS/C0 was assumed to
be lower as suggested by Huggins et al. (1998) and was set by default at
40% of initial SOC content, this value corresponding to the lower limit
of optimum values found earlier for simulating SOC evolutions with
AMG (Saffih-Hdadi and Mary, 2008).

2.4.3. Environmental functions
In AMGv1, the mineralization rate k of the active C pool depends on

climatic conditions and soil characteristics and is calculated using en-
vironmental functions as follows:

=k k f T f H f A f CaCO( ) ( ) ( ) ( )AMGv1 0 3 (4)

where k0 is the potential mineralization rate (yr−1), f(T) is a function of
mean annual air temperature (°C) and f(H) is a function used as a proxy
to describe the effects of soil moisture. f(H) is a function of the annual
water inputs (precipitation and irrigation water) and PET. f(A) and f
(CaCO3) are reduction rate functions of clay and CaCO3 contents on
SOM mineralization, respectively.

In AMGv2, we implemented the model of SOM mineralization re-
cently developed for the prediction of N mineralization in arable soils
(Clivot et al., 2017), so that the mineralization rate k is calculated in
this modified version following this equation:

=k k f T f H f A f CaCO f pH f C N( ) ( ) ( ) ( ) ( ) ( / )AMGv2 0 3 (5)

where f(T), f(H), f(A) and f(CaCO3) are the same functions than in
AMGv1, the parameter values of f(A) and f(CaCO3) differing slightly
between the two versions. In AMGv2, the additional functions f(pH)
and f(C/N) describe the effects of soil pH (increasing function) and C:N
ratio (Gaussian function) on SOM mineralization. The soil functions f
(A) and f(CaCO3) and their associated parameters in AMGv1 are similar
to those used in the v8.5 and earlier version of the STICS model
(Coucheney et al., 2015), while those in AMGv2 are corresponding to
the mineralization model developed in Clivot et al. (2017), except the
parameterization of f(CaCO3), which has been optimized independently
using mineralized N data in chalky soils (unpublished data). The po-
tential mineralization rate k0 was the only parameter optimized with
AMG for the calibration of each version of the model. All the functions
and parameters are detailed in supplementary material (Appendix A).

2.4.4. Calculation of carbon inputs
We adapted to French experimental data the approach described in

Bolinder et al. (2007) to calculate relative annual C allocation coeffi-
cients in the different plant parts in order to estimate aboveground (AG)
and belowground (BG) C inputs from crops residues. Plant aboveground
C was calculated according to measured dry matter yield (YP expressed
in t ha−1 yr−1) and mean harvest index (HI, grain to aerial biomass
(including grain) ratio) obtained from a compilation of data from
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French experiments. Plant C in straw and stubble (CSS) was calculated
using a C content of 0.44 g g−1 in the aboveground plant material
(Redin et al., 2014):

=C Y HI
HI

1 0.44SS P (6)

Aboveground C inputs (CAG) depend on the fraction of CSS (PSS) that
is returned to the soil:

=C P CAG SS SS (7)

PSS value being equal to1 when all crop residues are left in the field or
lower than 1 when a part of CSS is exported. PSS values were determined
for the different crops in case of straw residues export (PSE) and cor-
respond to the fraction of CSS, represented by stubble and chaff, that is
left to the soil. PSE values for the different crops are reported in Table
S3.

For BG input estimates, two C pools were calculated: 1) plant C in
roots (CR) and 2) plant C in extra-root material (CE) which corresponds
to organic matter deriving from root-turnover and root exudates. CR for
the different crops were calculated using shoot-to-root ratios (SR)
compiled in Bolinder et al. (2007) and completed by French experi-
mental data, assuming a C content of 0.40 g g−1 in the BG plant ma-
terial (Boiffin et al., 1986), lower than in AG crop residues (Buyanovsky
and Wagner, 1986):

=C Y
SR HI

0.40R
P

(8)

Extra-root C inputs were calculated following the assumption made
by Bolinder et al. (2007):

=C C0.65E R (9)

In order to estimate BG inputs, we used the asymptotic equation of
Gale and Grigal (1987) to determine the cumulative BG input fraction
(BGF) from the soil surface to a considered depth (cm):

=BG 1F Depth
Depth (10)

where β is a crop-specific parameter determined using the root dis-
tributions for temperate agricultural crops reported in Fan et al. (2016).
Calculated β values are reported in Table S3. The depth was set at 30 cm
to calculate BG inputs (CBG):

= +C BG C C( )BG F R E30 (11)

Calculated BG inputs, expressed in t C ha−1, were further corrected
for site-specific considered depth (20–30 cm in this study) by the AMG
model. Relative annual C allocation coefficients obtained for the crops
encountered in our experiments are reported in Table S3. C inputs from
exogenous organic matter (EOM) were calculated according to the
amount of organic amendment applied and to measured C content
conversion coefficients and were expressed in t C ha−1.

2.4.5. Humification coefficients
Humification coefficients of AG crop residues were calculated as in

the STICS model (Coucheney et al., 2015) using their specific average
C/N ratio (Machet et al., 2017) and the functions and parameterization
described in Justes et al. (2009), low C/N ratio of crop residues pro-
moting humification. The calculated humification coefficients, ranging
from 0.22 (for a C/N ratio of 82) to 0.31 (for a C/N ratio of 22) for the
different crops, are reported in Table S3.

We assumed that root derived C contributed more to stored SOC
than the same amount of C derived from AG crop residues (Balesdent
and Balabane, 1996; Ghafoor et al., 2017; Kätterer et al., 2011). We
calculated a value of 0.39 for the humification coefficient of BG inputs,
both using the data of Balesdent and Balabane (1996) and Kristiansen
et al. (2005) with 13C tracing and root incubation experiments de-
scribed in Justes et al. (2009). It corresponds to a relative contribution
of BG material to humified C 26%–77% greater than that of AG

residues. This range is in accordance with the data compiled by Rasse
et al. (2005) who found an average of 30% increase of humification
coefficient for root compared to shoot material in incubation studies.

Humification coefficients of diverse EOMs were determined by soil
incubations and inverse modeling in AMG simulations performed on
field-experiments. They were used for the parameterization of EOMs
applied into soils of this study. Humification coefficients used were 0.52
and 0.53 for bovine and pig manure respectively, and 0.50 and 0.15 for
bovine and pig slurry, respectively (Bouthier et al., 2014).

2.5. Model simulations

2.5.1. Modeling steps
Prior to simulations of SOC stock evolutions with AMG model, we

first used Random Forest (RF) regression analysis as a mean to identify
relevant variables (Hapfelmeier and Ulm, 2013) driving SOC stock
change rates in our experiments. SOC stock change rate, as the response
variable, was calculated as the slope of the linear regression of SOC
stocks against time in each trial. Selected input variables for the RF
analysis were related to climatic conditions (mean annual temperature,
cumulative precipitation and PET), soil characteristics (initial SOC
stock, soil pH, C:N ratio, clay, silt, sand and CaCO3 contents) and
agricultural practices (frequencies in the rotation of straw residue ex-
port, bare fallow or winter cover crops and mean annual EOM appli-
cations). RF was run in R Software version 3.3.0 (R Core Team, 2016)
using the randomForest package (Liaw and Wiener, 2002), the number
of trees being set to ntree = 100,000 to ensure convergence, while the
other parameters were set to their default values. The performance in
predicting SOC stock change rates by RF was compared with that ob-
tained with the two model versions (AMGv1 and AMGv2) against the
database. After this first step in which we analyzed SOC stock change
rates, we focused on the simulations of soil C stocks with AMG model.
The quality of prediction of AMGv1 and AMGv2 was compared to the
SOC evolution measured in the 60 field trials. Using AMGv2, we eval-
uated the effects of alternative methods for estimating plant C inputs
(2.5.2) and for setting the initial stable C pool proportion (2.5.3). We
also performed a sensitivity analysis of AMGv2 outputs to the different
input variables (see part 2.6.2).

2.5.2. Assessment of plant C inputs
Using AMGv2, we evaluated the effects of alternative methods for

estimating plant C inputs. Keel et al. (2017) have pointed out the im-
portance of the method of calculation of C inputs in modeling perfor-
mance. We compared three methods for estimating aboveground plant
C inputs (R, A1 and A2) and three methods for calculating belowground
crop residues (B1-B3). In the reference method R (detailed in part
2.4.4), fixed HI values were used to calculate aboveground C inputs
(CAG) regardless of crop yields. In method A1, harvest index was cal-
culated as a function of crop yield using coefficients from Fan et al.
(2017) who found linear correlations between HI and crop yields and
suggested that these relationships should improve estimations of crop
residue inputs in cold continental climates. Method A2 was similar to
A1, but used “local coefficients” for four major crops (wheat, winter
barley, maize and pea) derived from French experimental data. The
Bolinder approach was used for crop species which were not referenced
by Fan et al. (2017). All coefficients are reported in Table S4.

Recent studies suggested that belowground inputs (CBG) should be
estimated regardless of crop yield or aboveground biomass using crop
specific fixed values and/or dependent on farming systems
(Taghizadeh-Toosi et al., 2016; Hirte et al., 2017; Hu et al., 2018). In
the three methods B, aboveground inputs (CAG) were calculated using
the reference approach while BG input estimates (CBG) were fixed for
each crop species. In method B1, CBG was calculated for each crop as the
average of all CBG estimates obtained for this crop in our database with
the reference approach. Method B2 was similar but CBG was decreased
by 50% whereas it was increased by 50% in method B3, in order to
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account for uncertainties on the shoot:root ratio estimates which show
a coefficient of variation close to 50% (Bolinder et al., 2007). In all
three methods, the belowground estimates included the dead root
material (CR) and the extra-root material (CE), the latter being assumed
to represent 65% of root material, as proposed by Bolinder et al. (2007).
The potential mineralization rate k0 was re-optimized for each method.

2.5.3. Assessment of the size of the stable C pool
Using AMGv2, we compared three methods (M1-M3) of para-

meterization of the initial stable pool fraction (CS/C0). In method M1,
fixed values of CS/C0 were compared with those often recommended in
other models as previously performed in Saffih-Hdadi and Mary (2008):
we compared three values covering the range of usually reported va-
lues: 65%, 40% and 10% for soils with a long-term arable history. The
proportion was reduced by 40% in soils with a long-term grassland
history. For each parameter set, the potential mineralization rate k0 was
optimized giving three different k0 values.

In method M2, we tested the hypothesis that CS/C0 is not constant
but rather a decreasing function of SOC stock, suggesting that the active
C pool could be proportionally higher in soils with high SOC content.
We evaluated this hypothesis using the following empirical function:

=C
C

P eS
S

p QC

0
0

(12)

where QC0 is the initial SOC stock (t C ha−1). The parameter p was set
at one of three values (0.001, 0.005 and 0.010) and the parameter PS

(the proportion of CS/C0 for very low SOC stocks) was optimized each
time, while k0 was fixed at its default value.

In method M3, CS/C0 was optimized separately in each of the 20
sites, assuming that all treatments of the same site had a similar stable C
pool, using each of the three values of parameter k0 determined in
method M1.

2.6. Model evaluation

2.6.1. Statistical criteria
Statistical measurements of agreement between observed SOC stock

change rates and predictions made by the RF and AMG models were
performed by calculating the mean difference (MD, simulated minus
observed value), the modeling efficiency (EF), the index of agreement
(d1), the root mean squared error (RMSE) and the relative root mean
squared error (RRMSE) (Smith et al., 1996; Wallach, 2006; Willmott
et al., 1985). The average values of MD and RMSE obtained in each

experiment were used to calibrate the potential mineralization rate k0,
which has to be optimized for each version of the model. A trial-and-
error method was applied to determine the k0 value that allowed to
minimize both criteria. The same procedure was performed to de-
termine the best values of parameters that were optimized when as-
sessing the different C input calculation methods and when optimizing
the C pool partitioning.

The predictive quality of AMGv1 and AMGv2 models was assessed
by calculating the root mean squared error of prediction (RMSEP) using
leave-one-out cross-validation (Stone, 1974). The evaluation was car-
ried out each time on one site excluded from the calibration of k0,
which was optimized using the data of the 19 remaining sites. The mean
RMSEP of the 20 situations was computed to compare the predictive
quality of AMGv1 et AMGv2.

The coefficient of variation (CV) of measured SOC stocks was used
to compare the measurement error with the relative model error
(RRMSE).

2.6.2. Sensitivity analysis to input variables
We adapted the method conducted by Poeplau (2016) for the sen-

sitivity analysis of RothC model. We analyzed the sensitivity of AMGv2
outputs to a 20% increase in several variables related to C inputs (crop
yields, aboveground and belowground C inputs) and SOM mineraliza-
tion (rainfall, PET, initial size of the active C pool, soil C:N ratio, clay
and CaCO3 contents), except for temperature and pH which were in-
creased by 2 °C and 1 unit, respectively. To this end, we simulated the
SOC stock evolutions of reference scenarios for all 60 treatments over
an extended period of 100 years. We calculated for each treatment the
difference in SOC stocks at the end of the simulation (steady state)
between a modified scenario (increase of a variable) and the reference
one and analyzed the variations observed for the 60 treatments on
model outputs.

3. Results

3.1. Drivers and prediction of SOC stock change rates

For the 60 treatments, measured SOC stock changes ranged from
−24.0 to +7.1 t C ha−1 between the start and the end of experiments
(Table 1). Annual SOC stock change rates varied from −1.01 to
+0.45 t C ha−1 yr−1; the median and mean rates were −0.08 and
−0.20 t C ha−1 yr−1, respectively. The linear regression made to cal-
culate these rates is meaningful, since the RMSE was small (1.2 t C

Fig. 2. Distribution histogram of SOC stock change rates over the 60 field trials.
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ha−1) compared to the mean standard deviation of measurements
(2.3 t C ha−1), indicating that the general evolution of SOC was more or
less linear over time. The distribution of SOC change rates was skewed
towards negative values (Fig. 2). The interval [-0.1, 0.1] t C ha−1 yr−1

corresponds to the mean standard deviation of measurements and can
be considered as a SOC stock stability range. It represented 42% of si-
tuations. SOC declined in 49% of situations and SOC increase occurred
in the remaining 10% of situations.

The Random Forest (RF) analysis revealed that the initial C stock
was the most important variable in predicting SOC stock change rate
(Fig. 3A); indeed, the two variables are negatively correlated (Pearson
r = −0.59, p < 0.001). The variables related to climate (precipitation,
PET and temperature) were the second most important factor followed
by the management of crop residues and soil parameters (clay, pH and
C/N). The remaining input variables had less importance in the RF
model applied on our dataset. Significant correlations were found be-
tween SOC stock change rate and precipitation (r = −0.44, p < 0.001)
and PET (r = 0.37, p < 0.01) but no clear relationship was found with

the other variables.
Measured rates of SOC stock change were compared with predicted

rates either by the RF model (Fig. 3B) or by simulations performed by
AMG models: AMGv1 (Fig. 3C) and AMGv2 (Fig. 3D). The closeness of
fit to the 1:1 line shows that there was no marked bias in the predictions
made by the three models, MD varying between 0.00 and −0.05 t C
ha−1 yr−1. The range of predicted rates was narrower for RF than for
measured values. Overall, the statistical criteria revealed that AMGv2
performed better in predicting SOC stock change rates than RF and
AMGv1 showing a higher modeling efficiency (EF) and index of
agreement (d1), and a lower modeling error (RMSE).

3.2. Modeling SOC stock dynamics with AMG model

An example of SOC stock evolution and simulation performed by
AMGv2 on one experiment at the Boigneville site is illustrated in Fig. 4.
The model reproduced well the dynamics of total SOC stocks, ac-
counting for the effects of straw residue export which led to a slight

Fig. 3. Variable importance in a random forest (RF) model predicting SOC stock change rates for the 60 field trials (A) and observed vs predicted variations obtained
with the Random Forest (B), AMGv1 (C) and AMGv2 (D) models. SOC: soil organic carbon, EF: modeling efficiency, d1: index of agreement, RMSE: root mean squared
error of the model.
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decrease in C stock between 1982 and 1994 and the change in crop
rotation which occurred in 1998. It also simulated satisfactorily the
evolution of C stocks originating from C3 and C4 crops, particularly the
decrease in C4 stock after changing the 2-year wheat-maize rotation to a
4-year rotation without C4 crops.

The ability of AMGv1 and AMGv2 to predict SOC stock evolution
was evaluated in the 60 field treatments (Fig. 5). Fig. 5A and B shows
the absence of marked bias in the simulation of total SOC stock with
both model versions. Fig. 5C and D shows that there was no increase in
model error over time for the different C stocks simulated by both AMG
versions. The mean modeling error was lower for AMGv2 than for
AMGv1, RMSE being respectively 2.6 and 3.2 t C ha−1 for total SOC
stocks. The mean modeling error for C3 stocks was also smaller for
AMGv2 (MD = −0.5 and RMSE = 2.9 t C ha−1) than for AMGv1
(MD = −1.1 and RMSE = 3.9 t C ha−1). The predictive quality of
AMGv2 was better than that of AMGv1, RMSEP being respectively 2.7
and 3.5 t C ha−1 for total SOC stocks, when estimated using a cross-
validation method. Compared to AMGv1, the modified version AMGv2,
including the new mineralization function established on a completely
independent dataset, was found to improve the prediction of SOC
evolutions on long-term experiments.

AMGv2 was also tested on the database reported by Saffih-Hdadi
and Mary (2008). We obtained a similar quality of fit than that found by
these authors with the previous AMG version (mean RMSE of 1.6 t C
ha−1 for both versions). All results validated the reliability of this new
version, which was therefore used in the following analyses.

3.3. Sensitivity analysis of AMGv2 model

The sensitivity analysis of AMGv2 was conducted on steady state
situations. The reference scenario simulating the 60 treatments over a
100-year period predicted that the proportion of active pool C would
reach an asymptotic value close to the initial value (35% of total C) for
situations either with no export of straw biomass or with straw removal
but receiving EOM applications (Fig. S1). The proportion of active C
would, on average, stabilize around 20% of SOC for situations with

systematic straw residue removal.
The final SOC stocks simulated for this reference scenario were

compared with those obtained in alternative scenarios in which one
variable related to C input or SOM mineralization (depending on cli-
mate and soil properties) was increased. The mean SOC difference at
steady state between the alternative and reference scenarios ranged
from −4.1 to +2.7 t C ha−1, depending on the input variable modified
(Fig. 6). Variations in crop yield had a rather marked effect on SOC
stocks (mean + 2.7 t C ha−1), and corresponded to the sum of
aboveground and belowground C effects. The model was particularly
sensitive to changes in temperature, soil pH and C/N ratio, whereas
changes in precipitation and PET affected very little the SOC stocks. The
largest variability between sites in model response concerned soil pH.
The initial size of the active C pool was also an important factor de-
termining SOC stock at steady state. This emphasizes the importance of
the variables with the largest uncertainty, i.e. plant C inputs calculated
from crop yields and the initial SOC pool partitioning.

3.4. Impact of alternative methods for estimating plant C inputs

We evaluated the effect of alternative methods for estimating AG
and BG plant C inputs on SOC modeling with AMGv2, compared to the
reference R (Table 2). Method A1, which considered variable harvest
indexes depending on crop yields, increased slightly model error for the
simulation of soil C stocks, RMSE being of 2.6 vs 2.8 t C ha−1 for R and
A1 methods, respectively. Method A2, which used local coefficients for
calculating harvest indexes, produced slightly better simulations
(RMSE = 2.7 t C ha−1) than A1 but did not improve SOC simulation
compared to the reference. The alternative method of calculation of
belowground inputs, in which root biomass was assumed to be only
species dependent, did not affect much the quality of fit, as can be seen
with method B1. However, when root biomass was reduced by 50%
(method B2), SOC stock predictions were slightly improved for total
SOC (RMSE = 2.5 t C ha−1) and particularly for C4 stocks for which the
bias observed in the reference method disappeared. Conversely, a 50%
increase in root C input (method B3) resulted in a poor quality of fit,

Fig. 4. Example of observations (symbols) and simulations
performed by AMG (solid lines) of SOC stock evolutions in
the upper soil layer (29 cm depth) of one treatment of the
Boigneville long-term experiment (BOIG_A_CM4_L0). Circles
represent total SOC stocks, while triangles and squares re-
present C stocks originating from C3 and C4 crops, respec-
tively. Crop abbreviations: WW = Winter Wheat,
GM = Grain Maize, P = Pea, SB = Spring Barley, S =
Sugarbeet. Error bars are measured SD.
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both for total SOC and C4 stocks. It must be noticed that the reduction
of root input in method B2 is accompanied by a reduction in the po-
tential mineralization rate k0 which drops from 0.29 to 0.24 yr−1.

3.5. Impact of alternative methods for initializing the stable SOC pool

Three alternative methods (M1-M3) were assessed using AMGv2 for
setting the size of the initial stable SOC pool (Table 3). Method M1
compares the effects of three values for the initial stable pool propor-
tion (CS/C0). Results show that decreasing CS/C0 from the default value
of 0.65 (for sites with long-term arable history) to 0.40 or 0.10 de-
creased the quality of fit for the simulations of total SOC, particularly
for C3 and C4 stocks, increasing both the bias and the RMSE. The mi-
neralization rates k0, optimized for each initial CS/C0 value (0.65, 0.40
and 0.10), dropped from 0.29 to 0.17 and 0.11 yr−1, respectively.

In method M2, we tested the hypothesis that CS/C0 could be a de-
creasing (exponential) function of SOC stock. One parameter of this
function (p) was fixed and the other (PS) was optimized. This hypothesis
proved to be inappropriate since model performance declined com-
pared to the reference whatever the value of parameter p. The quality of
fit decreased gradually as the slope of the exponential function in-
creased.

In method M3, the size of the stable C pool was supposed to be site
specific. The optimized mineralization rates k0 obtained in method M1

were used as fixed parameters whereas CS/C0 was optimized for each
site. This assumption resulted in a decreased model error for the si-
mulations of total SOC stocks compared to the reference approach,
whatever the k0 value. The RMSE obtained with the default k0 value of
0.29 yr−1 was 1.8 t C ha−1, lower than those obtained for k0 values of
0.17 and 0.11 yr−1 (RMSE = 2.0 and 2.4 t C ha−1, respectively). In
addition, these alternative k0 values (corresponding to low values of CS/
C0) did not allow to simulate C3 and C4 stocks and generated an im-
portant bias on each stock (up to 3.5 t C ha−1). The variability of CS/C0

values optimized on each site for each k0 value is shown in Fig. 7. The
median CS/C0 values obtained for the 20 sites (0.63, 0.37 and 0.08)
were close to the single values initially applied to all sites (0.65, 0.40
and 0.10). The variability of CS/C0 between sites was much lower for
the default value of k0 (0.29 yr−1) than for the two other settings.

4. Discussion

4.1. Observed SOC evolution in arable cropping systems

The dataset considered in this study covers a period ranging from
1970 to 2015, the average being a 24-year period (1980–2003). It
covers the diversity of arable cropping systems practiced in France
during these years, with regard to crop rotations, tillage practices, crop
residue management, N fertilization and crop yields. During the more

Fig. 5. Measured vs predicted SOC stocks by the AMGv1 (A) and AMGv2 (B) models and error (difference between simulated and measured SOC stocks) over time of
AMGv1 (C) and AMGv2 (D) for all sampling dates of the 60 field-trials. Circles represent total SOC stocks, while triangles and squares represent C stocks originating
from C3 and C4 crops, respectively. The solid line represents the regression line between model error and time for total C, while the red and green dotted lines
represent the regressions for C originating from C4 and C3 crops, respectively. (For interpretation of the references to color in this figure legend, the reader is referred
to the Web version of this article.)
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recent years, an evolution towards a higher frequency of catch crop
cultivation and a slight reduction in tillage operations and intensity was
observed. Our results showed on average a slight decrease in SOC stocks
(mean rate of change = −0.20 t C ha−1 yr−1). This decrease could be
attributed to the legacy effect of conversion from grass to arable land
over the past 25 years with comparatively lower organic matter resti-
tution levels. In many regions, the areas devoted to permanent mea-
dows have declined regularly as exemplified in the Seine-Normandie
Basin between 1971 and 2013 in North of France (Beaudoin et al.,
2018). Steinmann et al. (2016) observed a drastic decline under arable
crops in Germany between 1989 and 2015, which was also mainly at-
tributed to grassland conversion to cropland. This is consistent with
other results obtained on conventional arable systems under temperate
climate. For example, Saffih-Hdadi and Mary (2007) gathered a set of
391 agricultural fields monitored several times in Picardie (Northern
France) during the 1970–1997 period and found a mean decrease rate
of −0.08 t C ha−1 yr−1. In Belgium, Goidts and van Wesemael (2007)
reported a decrease of −0.11 t C ha−1 yr−1 in arable crops during 50
years (1955–2005) confirmed by Meersmans et al. (2011) who ob-
served a mean decrease of −0.09 t C ha−1 yr−1 from 1960 to 2006.

4.2. Drivers of SOC dynamics

The main drivers of SOC dynamics identified by RF were the soil
characteristics (initial SOC stock, texture, …), the agricultural practices
(residue management, cover crops, EOM) and the climate (precipita-
tion, temperature). The initial SOC stock was a main factor as shown by
the RF analysis and the negative correlation between SOC change rates
and the initial SOC stock. Such a strong negative relationship was al-
ready pointed out by Goidts and van Wesemael (2007), Zhao et al.
(2013) and Luo et al. (2017). It suggests that soils with the highest SOC
contents, with past grassland or having received important amounts of
EOM, were not yet at equilibrium and are still declining. This is con-
sistent with Oberholzer et al. (2014) who found that SOC content was
still declining even 60 years after the conversion of grassland to crop-
land. Post et al. (2008) have pointed out the importance of an accurate
determination of initial SOC stock in the propagation of uncertainty in

SOM models.
Residue management (straw removal vs retention) was also an im-

portant factor identified by both RF and AMG model. This confirms the
results obtained by Saffih and Mary (2008) and Liu et al. (2014). Re-
ducing residue removal increased SOC in most wheat cropping systems
studied in Australia by Zhao et al. (2013) and Luo et al. (2017).

The impact of climatic factors was more surprising: the temperature
effect was consistent between RF analysis and AMG model, but not
precipitation, which was an influent factor in RF but not in AMG. This
apparent contradiction is due to the fact that precipitation was strongly
correlated with initial SOC content (r = 0.59, p < 0.001). In fact,
running the RF analysis without this variable explained as much var-
iance than with it. The small sensitivity of AMG model reflects the
moderate range of water balance (P-PET varied from −290 to 595 mm
yr−1) in all sites, without dry situations such as described by Luo et al.
(2017). Indeed, we confirmed the absence of improvement in model
performance when recalibrating this function. Taghizadeh-Toosi et al.
(2014) also found that there was no need to account for moisture effects
in the C-TOOL model to simulate the data obtained in three LTEs of
Northern Europe.

Finally, two other soil characteristics were identified as being in-
fluent on SOC evolution: the C/N ratio and soil pH. Both were identified
in this study by the Random Forest analysis and previously as drivers of
organic N mineralization (for more discussion see Clivot et al., 2017),
justifying the implementation of these variables and their effect in
AMGv2.

The model could simulate the LTEs without considering nitrogen
(N) availability as a possible driver of SOC evolution, as suggested by
the C:N stoichiometry observed in SOM composition (van Groenigen
et al., 2017). This may result from the positive N surplus observed in
most of our experiments, but a possible limitation should be considered
in other experiments, particularly those receiving low N inputs.

4.3. Reliability of AMG model

The new AMG version was found to better predict SOC stock change
rates than RF and AMGv1. The general evolution of SOC was found to

Fig. 6. Boxplots showing the sensitivity of the AMGv2 model to 20% increase in different variables/parameters related to C inputs and SOM mineralization, excepting
temperature and pH which were increased by 2 °C and 1 pH unit, respectively. Boxplots represent the variations of the differences between the modified scenario
(increase of the variable) and the reference scenario for all 60 trials over an extended period of 100 years. The dotted line represents the result for the simulation of
final SOC stocks in the reference scenario with unmodified data and parameters. Boxplots show median and quartiles, while whiskers represent samples lying within
1.5 times the interquartile range. Extreme outliers are not shown.
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be more or less linear over time. However, on the contrary to AMG, RF
is a statistical model which cannot capture subtle changes in SOC
through time since RF, as used in this study, cannot take into account
annual variations of climate and C inputs. In AMGv2, the im-
plementation of two additional variables (soil pH and C/N ratio), pre-
viously identified as drivers of SOM mineralization (Clivot et al., 2017)
but not considered in AMGv1, slightly improved the quality of SOC
predictions, since the relative root mean square error (RRMSE) de-
creased from 6.1% for AMGv1 to 5.3% for AMGv2. This result was
obtained with a common set of parameters for all sites, without any
site-specific calibration. This model error was only slightly greater than
the mean coefficient of variation of measurements which was 4.3%.
Furthermore, the model error did not increase with time, showing that
there was no significant drift over time. The model error is comparable
to that obtained on other LTEs with other models. Smith et al. (1997)
compared nine models on 7 LTEs and found a RRMSE varying between
6.5% and 10% for the best 6 models. Falloon and Smith (2002) simu-
lated 6 LTEs and obtained a mean RRMSE of 6.8% for Century and 9.9%
for RothC. The CCB model (Franko et al., 2011), evaluated on 40 sites in
central Europe, showed a mean RRMSE of 8.5%. Taghizadeh-Toosi et al.
(2014) evaluated the C-TOOL model on 3 LTEs in Northern Europe and
obtained a mean RRMSE of 6.1% for topsoils. Using the Century model,
Dimassi et al. (2018) obtained a RRMSE of 13.1% on a subset of our
database with 6 LTEs.

Datasets including 13C natural tracing experiments (with C4 and C3

plants) are essential to better evaluate SOM models, because they allow
to characterize separately the decrease in «old» SOM and the increase in
newly formed SOM (Balesdent, 1996). The AMG model was shown to
simulate well the evolution of C3 and C4 stocks in the experiments
which included C4 plants, showing its ability to simulate the two
components of SOC change.

4.4. Uncertainties in plant C input estimates

C input estimates in our study are close to those obtained in com-
parable climatic conditions, reported by Wiesmeier et al. (2014) in
Germany for cereals (3.2 vs 3.1 t C ha−1 yr−1) and for other crops (2.7
vs 2.3 t C ha−1 yr−1). These inputs, which represent annually 5.3% of
SOC on average, include uncertainties on aboveground inputs, parti-
cularly on the harvest index. The model performance was little sensitive
to the method of calculation: the model did not perform better when
using a variable HI calibrated with French references compared to the
original Bolinder method with a fixed HI. Comparing five different
methods, Keel et al. (2017) also found that the Bolinder method gave
the best predictions of SOC evolution using the C-TOOL model. How-
ever, the greatest uncertainties about C input are those relating to be-
lowground C. For root biomass estimates, we found little difference in
model performance when using allometric equations (R) or fixed bio-
mass (B1). Taghizadeh-Toosi et al. (2016) made the same comparison
with the C-TOOL model and obtained a better quality of fit when using
the fixed root biomass option. Recent studies suggest that root biomass
could be independent of aerial biomass, questioning the rationale of
allometric relationships. Hirte et al. (2018) found that N fertilization
rate affects the below:above ground ratio of wheat and maize but does
not modify the belowground C inputs. Komainda et al. (2018) found no
effect of N fertilization on root biomass and turnover in two cultivars of
maize. Hu et al. (2018) even found larger root biomass of cereals and
catch crops in organic farming than in conventional systems, in spite of
a lower aerial biomass. Therefore, using a fixed amount of root biomass
depending on crop species only seems to be a preferable option for si-
mulating SOC evolution.

Concerning the BG inputs, our results show that model performance
(including the prediction of C4 stocks) markedly declined when in-
creasing BG inputs beyond the default fixed root biomass (method B1).
This indicates that the contribution of root and extra root material (65%
of root material, i.e. 40% of BG inputs) to the humified C input is set atTa
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its maximum and could even be overestimated. A similar conclusion on
extra root C was drawn by Poeplau (2016) with the RothC model, while
results from a recent field study (Hirte et al., 2018) suggest that the
proportion of rhizodeposition of total BG inputs for maize and wheat
should be higher (on average 55% in the topsoil for net rhizodeposition
C) than the widely adopted value of 40%. However, besides the un-
certainty on the amount of extra root material deposited, it should be
noticed that the humification coefficient applied to this fraction in our
model is equivalent to that of roots, whereas root exudates are very
labile substances and might contribute less to SOC formation.

4.5. Initializing the size of the stable SOC pool

The sensitivity analysis indicated that the initial setting of the inert
SOC pool had a large impact on model outputs, confirming previous
studies (e.g. Puhlmann et al., 2007). The site-specific adjustment of SOC
pools gave better simulations than default parameterization, since the
RRMSE reduced from 5.3 to 3.7% as previously observed with Century
and RothC models (Falloon and Smith, 2002). However, the lack of

information on the past land use (particularly the grassland history) did
not allow us to calculate a more precise initial partitioning of SOC
between pools.

During the calibration phase, the optimization of the size of the
recalcitrant C pool (either inert or having a residence time greater than
1000 years) is highly dependent on the value of the potential rate
constant of the active C pool, because both are correlated. The strong
correlation between the two parameters may even result in equifinality,
i.e. leading to similar model performance for widely varying paired
parameter values (Luo et al., 2016). This was not the case with our
dataset and model, since the model error increased significantly, par-
ticularly for the C4 stocks simulations, when the initial stable pool
fraction was reduced from 65% to 10%. The mean value found in op-
timizing the site-specific CS/C0 was 60 ± 18% for sites with a long-
term arable history and was found to be lower (i.e. 47%) for the site
with long-term grassland history. This result confirms the default
parameterization established earlier (Saffih-Hdadi and Mary, 2008).

Chemical methods have been proposed to characterize the more
stable SOC fractions with a limited success (Helfrich et al., 2007; von
Lützow et al., 2007). Combining particle size fractionation and che-
mical analysis was more successful in separating SOC into fractions
with different turnover rates (Poeplau et al., 2018) and in matching
measurable C fractions and model pools (Zimmermann et al., 2007;
Herbst et al., 2018). New methods such as thermal analysis are also
promising: they could allow identifying fractions having a residence
time of about 20 years (Soucémarianadin et al., 2018), these latter
corresponding to the residence time in our experiments (varying from 7
to 26 years). Data from long-term bare fallow experiments (Barré et al.,
2010) can also be combined with thermal analysis to quantify the size
of centennially persistent SOC pool (Cécillon et al., 2018) in order to
better calibrate soil C models.

5. Conclusion

The modified version of AMG model including the new function of
SOM mineralization was found to improve the prediction of SOC evo-
lution compared to the previous version. The model could simulate SOC
stock dynamics in LTEs conducted in French conventional arable sys-
tems with a mean relative model error of 5.3%. The results strengthen
the importance of SOC pool partitioning and therefore the need of

Table 3
Evaluation of the quality of fit obtained with AMGv2 using three methods and three parameterizations for setting the size of the initial stable pool proportion (CS/C0).

Method Initial stable pool fraction (CS/C0) Fixed parameter Fixed parameter Optimized parameter Total SOC SOC-C3 SOC-C4

MD RMSE MD RMSE MD RMSE

t C ha−1 t C ha−1 t C ha−1 t C ha−1 t C ha−1 t C ha−1

M1 Constant Fixed CS/C0 0.65 * k0 0.290 −0.1 2.6 −0.5 2.9 0.4 2.0
Fixed CS/C0 0.40 * k0 0.170 0.0 2.9 −1.5 2.3 2.3 2.9
Fixed CS/C0 0.10 * k0 0.115 −0.1 3.3 −2.5 3.2 3.5 4.2

M2 Variable CS/C0 = Ps·exp
(-p.QC0)

k0 0.290 p 0.001 Ps 0.66 0.0 2.9 0.6 2.1 0.4 2.0

CS/C0 = Ps·exp
(-p.QC0)

k0 0.290 p 0.005 Ps 0.83 −0.1 3.4 1.0 2.5 0.4 2.0

CS/C0 = Ps·exp
(-p.QC0)

k0 0.290 p 0.010 Ps 1.00 −1.3 4.1 0.1 2.9 0.4 2.0

M3 Site specific Fixed k0 0.290 CS/C0 Site specific
**

0.1 1.8 −0.4 2.3 0.4 2.0

Fixed k0 0.170 CS/C0 Site specific
**

0.1 2.0 −2.3 2.9 2.3 2.9

Fixed k0 0.115 CS/C0 Site specific
**

0.7 2.4 −2.6 3.3 3.5 4.2

* Values reduced by 40% in the site with long term grassland history.
** The variabilities of CS/C0 values optimized for the 20 sites are shown in Fig. 7.
Line in bold corresponds to the reference method.

Fig. 7. Variability of the initial stable C pool proportion (CS/C0) optimized for
each site (n = 20) for three different values of the potential mineralization rate
(k0). Boxplots show median and quartiles, while whiskers represent samples
lying within 1.5 times the interquartile range. Extreme outliers are not shown.
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methods that would allow to measure functional C fractions to better
initialize soil C model simulations. The model performance appeared to
be little sensitive to the method of plant C input estimation. Considering
root C inputs independent of aerial biomass production as shown by
recent studies was found to perform as well as allometric relationships,
suggesting that using a fixed amount of root biomass depending on crop
species should be preferred in the model. AMG demonstrates a good
potential for predicting SOC evolution in scenarios varying in climate,
soil properties and management for conventional arable cropping sys-
tems. The next objective will be to improve the ability of AMG for
modeling other systems such as low input or organic systems, cropping
systems including perennial species or permanent grasslands in order to
extend the validity domain of the model to simulate contrasting agri-
cultural systems.
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Appendix A. Model description and environmental functions and parameters used in AMGv1 and AMGv2 models

A.1. Model description

AMG is a model designed to simulate soil C dynamics at an annual time step (Andriulo et al., 1999; Saffih-Hdadi and Mary, 2008). The model
considers three organic matter (OM) compartments: fresh OM (FOM) coming from crop residues or organic amendments which can be decomposed
or humified, and SOM which is divided into active (CA) and stable C pools (CS).

AMG can be described by this set of equations:

= +QC QC QCS A (2)

=dQC
dt

m h kQCA

i
i i A

(3)

where QC is the total SOC stock (t ha−1), QCA and QCS are the C stocks of the active and stable C pools (t ha−1) respectively, mi is the annual C input
from organic residue i (t ha−1 yr−1), h is its humification coefficient and k is the mineralization rate constant of the active C pool (yr−1).

The model allows simulating separately the C originating from C3 or C4 crops using 13C natural isotopic abundance measurements. The C stocks
originating from C3 (QC3) and C4 (QC4) crops were calculated using the following equations (Balesdent et al., 1987):

=QC C C
C C

QCS
3

13 13
4

13
3

13
4 (S1)

=QC C C
C C

QCS
4

13 13
3

13
4

13
3 (S2)

where δ13CS is the measured 13C isotopic composition in the soil and δ13C3 and δ13C4 are the isotopic compositions of C3 and C4 crops in the rotation,
respectively. The isotopic signatures defined in the model parameters for C3 and C4 residues are directly applied to their humified fractions. The
isotopic signatures of C3 and C4 humified plant residues were set by default at −27.5‰ and −12.5‰ of δ13C, respectively. These values are close to
those reported for C3 and C4 plants and we assume that δ13C of SOM is about equal to that of plant materials from which it is derived (Balesdent
et al., 1987). The proportion of QC4 being part of the stable C compartment at the start of the experiment (PC4S) can be specified in the model or
optimized to define the distribution of C originating from C4 crops between the active (QC4A) and stable pools (QC4S):

=QC PC QCS s4 4 4 (S3)

=QC QC QCA s4 4 4 (S4)

The partitioning of C originating from C3 crops between the active (QC3A) and stable pools (QC3S) was therefore calculated as follows:

=QC QC QCA A A3 4 (S5)

=QC QC QCS S S3 4 (S6)

A.2. Environmental functions and parameters

In AMGv1 and AMGv2, the mineralization rate k of the active C pool is calculated using environmental functions following these equations:

=k k f T f H f A f CaCO( ) ( ) ( ) ( )AMGv1 0 3 (4)

=k k f T f H f A f CaCO f pH f C N( ) ( ) ( ) ( ) ( ) ( / )AMGv2 0 3 (5)

where k0 is the potential mineralization rate (in yr−1) set at 0.165 and 0.290 for AMGv1 and AMGv2, respectively.

H. Clivot, et al. Environmental Modelling and Software 118 (2019) 99–113

110

http://www.institut-pivert.com
https://doi.org/10.1016/j.envsoft.2019.04.004


In both AMG versions, f(T) is a function of mean annual air temperature T (°C):

=
+

f T a
b c T

( )
1 exp( )

T

T T (S7)

with =f T T( ) 0 if 0

=b a c Tand ( 1) exp( )T T T Ref (S8)

with aT = 25, cT = 0.120 K-1 and TRef = 15 °C.
f(H) is a function used as a proxy to describe the effects of soil moisture. These effects are calculated in f(H) as a function of the difference

between cumulative annual water inputs (precipitation P and irrigation water IW) and potential evapotranspiration PET (in mm):

=
+ +( )f H

a b
( ) 1

1 expH H
P PET IW

1000 (S9)

with aH = 3.0 10−2 and bH = 5.247 m-1

Function f(A) and f(CaCO3) are describing the effects of clay (A) and CaCO3 (CaCO3) contents (g kg−1) on SOM mineralization, respectively:

=f A a A( ) exp( )m (S10)

with am = 2.720 10−3 and 2.519 10−3 (g kg−1) in AMGv1 and AMGv2, respectively.

=
+

f CaCO
c CaCO

( ) 1
1 m

3
3 (S11)

with cm = 1.67 10−3 and 1.50 10−3 (g kg−1) in AMGv1 and AMGv2, respectively.
In AMGv2, the additional functions f(pH) and f(C/N) are describing the effects of soil pH and C/N ratio on SOM mineralization:

=f pH a pH b( ) exp( ( ) )pH pH
2 (S12)

with apH = 0.112 and bpH = 8.5

= +f C N a C N b( / ) 0.8 exp( ( / ) ) 0.2CN CN
2 (S13)

with aCN = 0.060 and bCN = 11.
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