

Utilisation de l'Analyse du Cycle de Vie (ACV) pour l'évaluation des impacts environnementaux des circuits courts et de proximité : exemple de la pomme Jonagold et du porc sur paille

Caroline Godard et Joachim Boissy Agro-Transfert Ressources et Territoires

c.godard@agro-transfert-rt.org

Colloque SFER
Les Circuits Courts de Proximité Renouer les liens entre territoires et consommation alimentaire

4 juin 2013 - Paris

Introduction

- Demande de la marque « Terroirs de Picardie » d'une évaluation quantitative des impacts environnementaux des circuits courts
- Actuellement peu d'évaluations adaptées au contexte local (production & logistique)
- Des études d'impact souvent limitées aux seuls changement climatique et énergie
- ⇒ L'ACV peut apporter une réponse en intégrant :
 - toutes étapes du cycle de vie
 - les spécificités locales : modes de production et scénarios logistiques réels des produits

4 juin 2013 ²

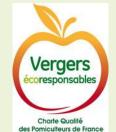
Plan de la présentation

- Objectifs et cadrage de l'étude
- Hypothèses, méthodes et données d'inventaire
- Impacts environnementaux sélectionnés

Résultats

Objectifs de l'étude

- Disposer d'éléments objectifs d'évaluation environnementale de produits « Terroirs de Picardie » destinés aux restaurants scolaires en circuits courts, en se basant sur 2 exemples
- Identifier la part respective de la logistique et de la production agricole dans les impacts environnementaux
- Identifier les leviers d'amélioration possibles pour les producteurs


Les produits étudiés

Produits « Terroirs de Picardie »

Source des données

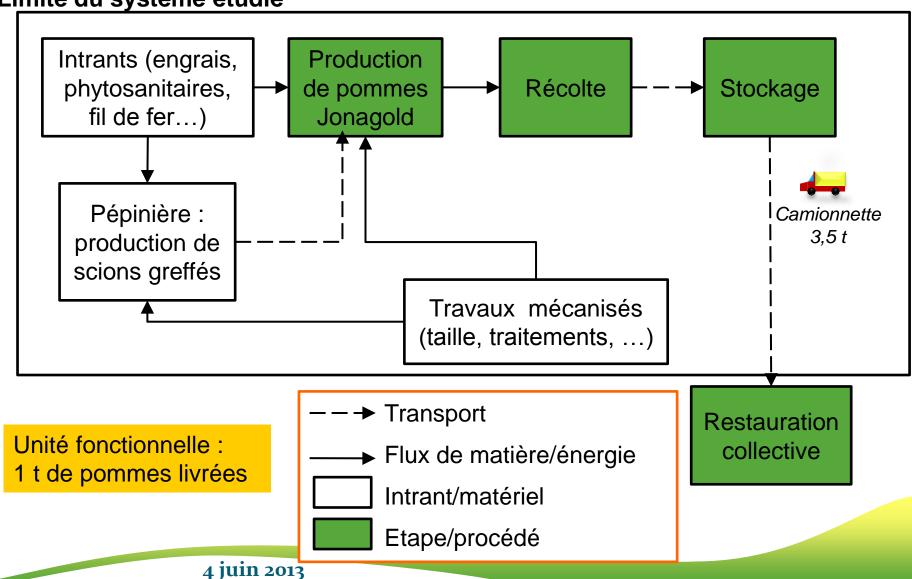
la pomme de table

en production fruitière intégrée

- 1 exploitation indépendante
- + 1 coopérative

le porc d'antan

(porc sur paille alimentation produite en majorité à la ferme)



1 exploitation

AGRO-TRANSFERT La pomme Jonagold: système étudié et unité fonctionnelle

Limite du système étudié

AGRO-TRANSFERT Le porc sur paille :

4 juin 2013

système étudié et unité fonctionnelle

Compost épandu sur des cultures n'entrant pas dans la composition des aliments Limite du système étudié Exploitation agricole Lisier épandu sur les cultures Stockage/compostage Fumier et lisier entrant dans la composition des déjections des aliments **Bâtiments** Production de Stockage Fabrication des triticale, blé, pois, d'élevage des grains aliments à la féverole, avoine, **Production** à la ferme ferme escourgeon des porcs Porc 116 kg _ Bétaillère tractée Production **Abattoir** d'aliments Abattage et découpe achetés Viande de porc Camion frigorifique découpée 16-32t **Transport** Restauration Unité fonctionnelle : collective Flux de matière/énergie 1 t de viande de porc livrée Etape/procédé

Abattoir

Localisation

Hypothèses pour l'inventaire

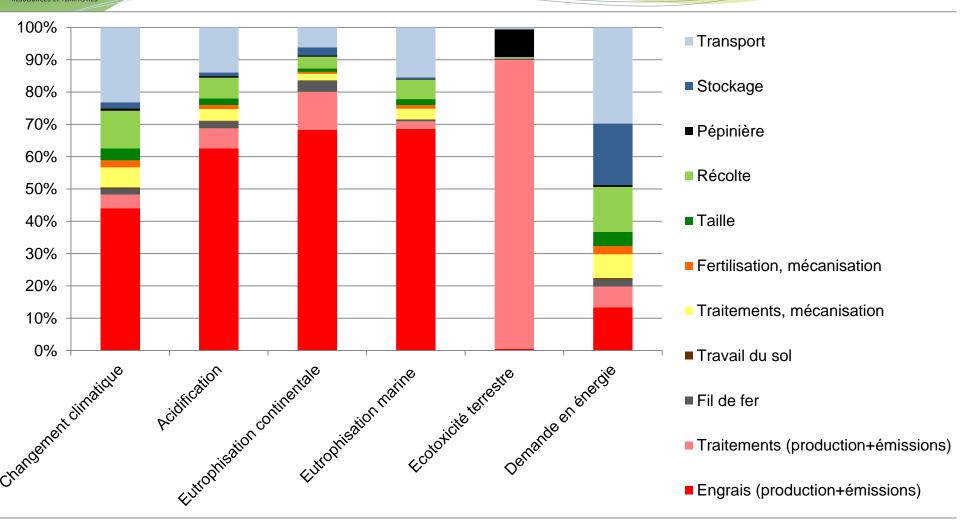
Verger : données issues d'1 année référence

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
pépinière	installation	production	Montée en					Ple	ine p	roduc	tion				

- Effluents des porcs
 - Prise en compte du lisier épandu sur les cultures entrant de l'alimentation
 - Exclusion des consommations et émissions du fumier composté épandu hors cultures de l'alimentation

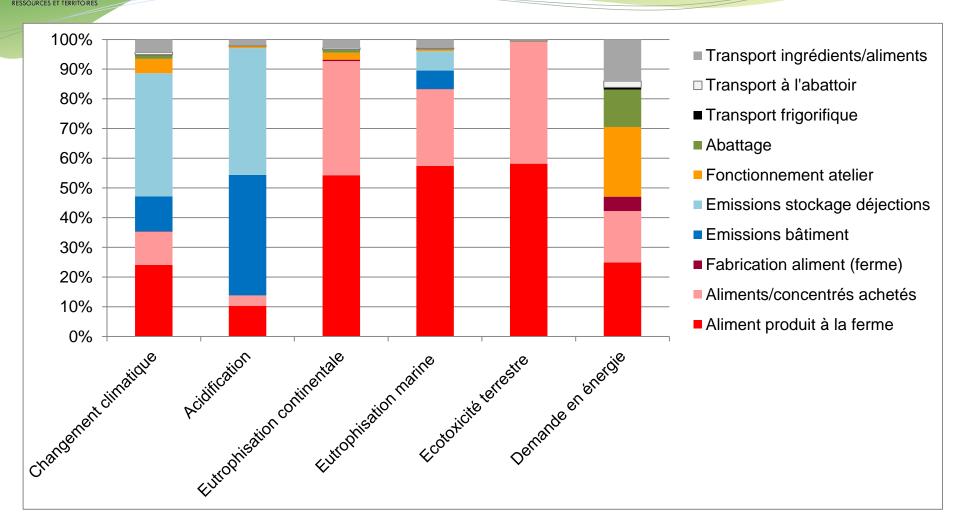
Méthodes et sources des données d'inventaire

Flux	Méthodes et sources des données
Emissions N, P au verger ou au champ	Bilans , coefficients d'émission, Références Nemecek & Kägi, 2007, ADEME, 2010 et USLE
Flux de pesticides au verger ou au champ	Modèle Pest-LCI, Dijkman et al., 2012
Emissions liées à la combustion des carburants et à l'abrasion des pneus, aux bâtiments	Ges'tim, 2010 et Nemecek & Kägi, 2007
Emissions liées à la gestion des effluents d'élevage (dans et hors bâtiments)	EMEP/EEA, 2009
Fabrications (machines, engrais, pesticides, semences)	Modélisation simplifiée et Ecolnvent, 2010
Fabrication de l'aliment des porcs à la ferme (consommations électriques)	Données enquête et EcoInvent, 2010
Logistique (distances, modalités de transport)	Données enquête et EcoInvent, 2010

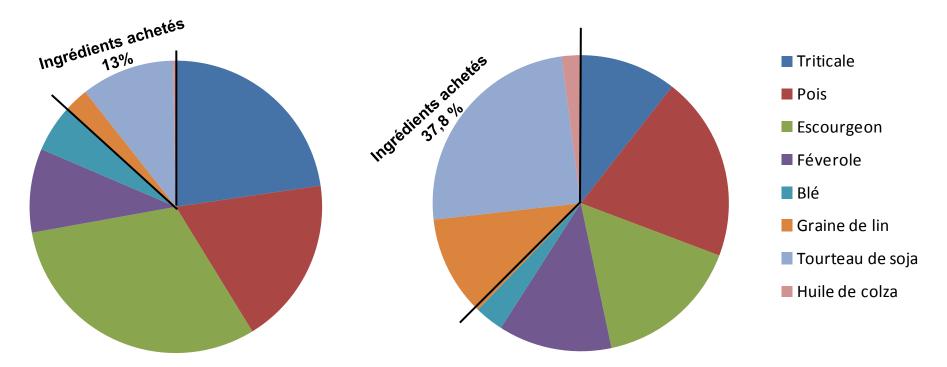


Impacts sélectionnés

Catégorie d'impact	Méthode d'évaluation	Unité
Changement climatique	Recipe (PRé Consultants, 2008)	kg éq CO ₂
Acidification	Recipe (PRé Consultants, 2008)	kg éq SO ₂
Eutrophisation continentale	Recipe (PRé Consultants, 2008)	kg éq P
Eutrophisation marine	Recipe (PRé Consultants, 2008)	kg éq N
Ecotoxicité terrestre	Usetox (Henderson et al., 2011)	Comparative Toxic Unit (CTU)
Demande en énergie	Cumulative energy demand, version 1.08	MJ

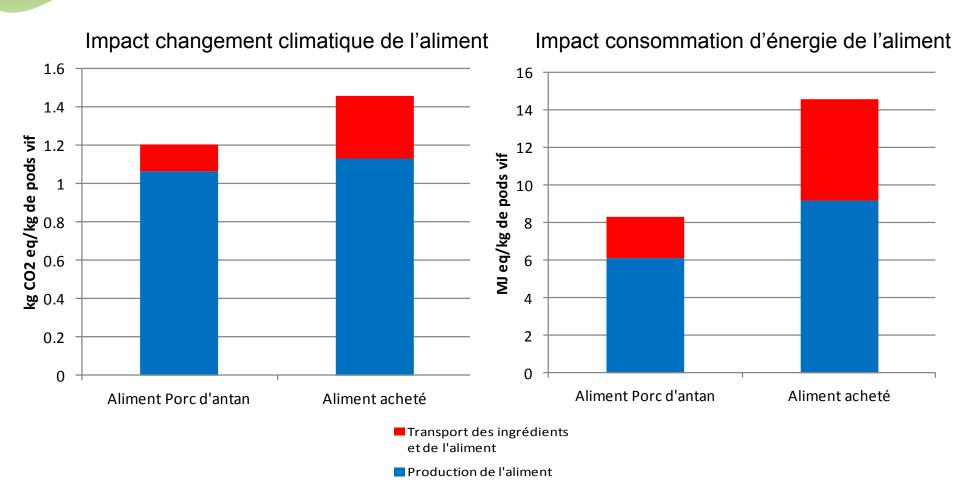

Pomme : contribution des différentes étapes

- → Le stockage et transport sont des étapes impactantes
- → Importance de la production et de l'utilisation des engrais
- → Importance de la consommation de carburant pour les différents travaux


Porc sur paille : contribution des différentes étapes

- → Transports des porcs vifs et de la viande très peu impactants (au plus 2%)
- → Transport des ingrédients pour alimentation plus impactant que le transport post-production
- → Importance de l'alimentation y compris les ingrédients achetés
- → Emissions des effluents principales contributrices aux impacts CC et acidification

Alimentation du porc : statut des ingrédients


Proportion des ingrédients dans l'aliment engraissement

Contribution des ingrédients à l'impact changement climatique d'1 kg d'aliment engraissement

- → Ingrédients protéinés (pois et tourteau de soja) sont les plus impactants
- →Fort impact des graines de lin à cause notamment du transport (provenance Canada)

Alimentation du porc : importance de la provenance

→ Production à la ferme permet une diminution du coût environnemental de l'aliment pour le changement climatique et l'énergie

Les leviers d'amélioration des impacts environnementaux

- Pomme Jonagold en PFI
 - Maîtrise et ajustement des fertilisations minérales
 - Optimisation de la mécanisation (récolte)
 - Optimisation du transport et du stockage
- Porc sur paille, aliment produit majoritairement à la ferme
 - Gestion des effluents (couverture des stockages)
 - Modifications de l'alimentation : limitées par la technique

Conclusion et perspectives

- Produit animal et végétal : place différente de la logistique (transport et stockage) dans les impacts
- Intérêt environnemental des modes de production étudiés : aliment à la ferme
 - ⇒Confirmer ces résultats par l'étude d'autres produits animaux et végétaux vendus en circuits courts
 - ⇒ Compléter par l'évaluation socio-économique

