

SOCLE:

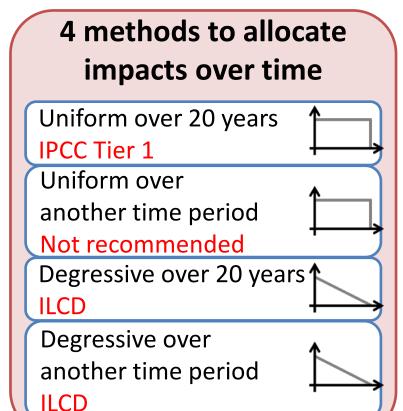
Soil Organic Carbon changes in LCA, which Evaluations to improve environmental assessments?

Cécile BESSOU, Anthony BENOIST, Aurélie TAILLEUR, Caroline GODARD, Armelle GAC, Joachim BOISSY

Introduction

Context: ADEME SOCLE project 2014-2017

- Scope: Soil Organic Carbon & Climate Change in LCA
- Objective: Towards a consensual LCIA model...
 - Review/recommendations on how to model in LCA:
 LULUC x agri. practices ⇒ ΔSOC ⇒ GHG
 - Feasability/sensitivity for various agricultural contexts
- Method review (Benoist et al. 2018)


3 methods to assess the impact

Stock-difference approach IPCC / ILCD

Müller-Wenk & Brandão 2010 **UNEP-SETAC**

Levasseur 2011, dynamic LCA Not recommended

Accounting for the link C:N **IPCC**

3 methods to assess the impact

Stock-difference approach IPCC / ILCD

Müller-Wenk & Brandão 2010

Levasseur 2011, dynamic LCA

IPCC / ILCD

LCI method

$$SOC = SOCSTD * FLU * FM_G * FI$$

$$\Phi_{CO_2,A \to B} = \left(SOC_A - SOC_B\right) * \frac{44}{12}$$

* temporal allocation rule

Accounting for the link C:N

IPCC

3 methods to assess the impact

Stock-difference approach IPCC / ILCD

Müller-Wenk & Brandão 2010 UNEP-SETAC

Dynamic LCA
Not recommended

UNEP-SETAC

LCIA method within the land use framework

 Δ Stock depends on the reference state df = biogenic carbon stay in the air/fossil one

$$CF_{occupation} = \frac{44}{12} \cdot \Delta Stock \cdot df \cdot \frac{1}{t_{occ}}$$

$$CF_{transformation} = \frac{44}{12} \cdot \Delta Stock \cdot df$$

* temporal allocation rule

3 methods to assess the impact

Stock-difference approach

Müller-Wenk & Brandão 2010

Levasseur 2011, dynamic LCA Not recommended

Not recommended **LCIA** method

GWP depends on the timing of emission GWP are all integrated over a fixed 100 year horizon starting at the moment of the first emission/storage

$$CF_{transformation} = \frac{\Delta C}{\Delta yr} * \frac{44}{12} * GWP_{dyn}$$

* temporal allocation rule

Case studies

Investigated agricultural products

- 3 temperate crops
 wheat-maize-vine
 + meat-milk
- 2 tropical crops
 soybean-sugar cane

Scenarios and sensitivity analyses

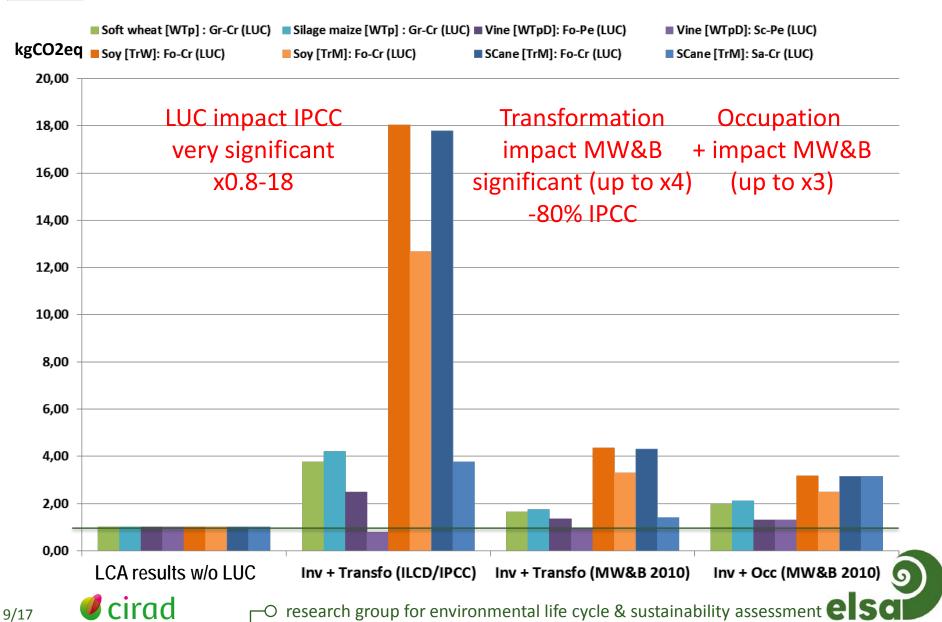
- Changes in land uses and practices (at least 2 scenarios per crop)
- C stock data (IPCC, literature, +10%)
- Reference states (various)
- Regeneration times (+10%)

Results

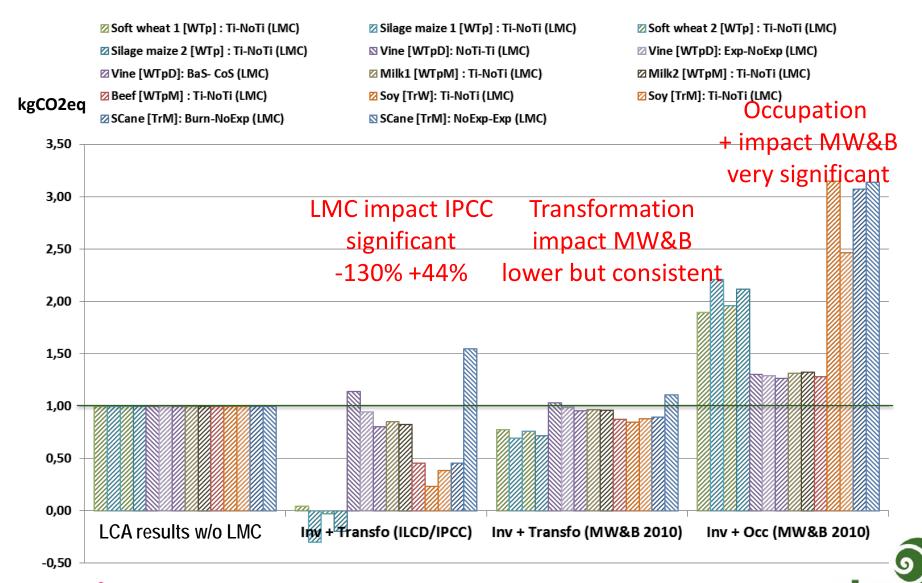
Results are in CO_{2e} and presented relative to :

- The total impact without LULUC
- A baseline option with LULUC

Colour code

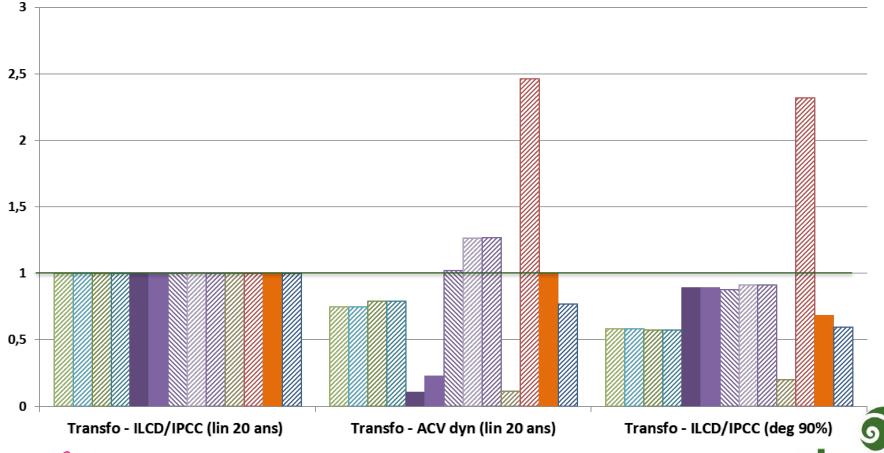

- Soft wheat [WTp] : Gr-Cr (LUC)
- Silage maize [WTp] : Gr-Cr (LUC)
- Vine [WTpD]: Fo-Pe (LUC)
- Vine [WTpD]: Sc-Pe (LUC)
- Soy [TrW]: Fo-Cr (LUC)
- Soy [TrM]: Fo-Cr (LUC)
- SCane [TrM]: Fo-Cr (LUC)
- SCane [TrM]: Sa-Cr (LUC)

- ☑ Soft wheat 1 [WTp] : Ti-NoTi (LMC)
- ☑ Silage maize 1 [WTp] : Ti-NoTi (LMC)
- ☑ Soft wheat 2 [WTp] : Ti-NoTi (LMC)
- ☑ Silage maize 2 [WTp] : Ti-NoTi (LMC)
- ∇ine [WTpD]: NoTi-Ti (LMC)
- ☑ Vine [WTpD]: Exp-NoExp (LMC)
- ☑ Vine [WTpD]: BaS- CoS (LMC)
- ☑ Milk1 [WTpM] : Ti-NoTi (LMC)
- ☑ Milk2 [WTpM] : Ti-NoTi (LMC)
- ☑ Beef [WTpM] : Ti-NoTi (LMC)
- ☑ Soy [TrW]: Ti-NoTi (LMC)
- ☑ Soy [TrM]: Ti-NoTi (LMC)
- ☑ SCane [TrM]: Burn-NoExp (LMC)
- SCane [TrM]: NoExp-Exp (LMC)



IPCC & MW&B: impacts of LUC

IPCC & MW&B & : impacts of LMC



Dynamic LCA & temporal allocation

- ☑ Soft wheat 1 [WTp] : Ti-NoTi (LMC)
- ☑ Silage maize 2 [WTp] : Ti-NoTi (LMC)
- NVine [WTpD]: NoTi-Ti (LMC)
- ☑ Milk1 [WTpM] : Ti-NoTi (LMC)
- ☑ SCane [TrM]: Burn-NoExp (LMC)

- ☑ Silage maize 1 [WTp] : Ti-NoTi (LMC)
- Vine [WTpD]: Fo-Pe (LUC)
- ☑ Vine [WTpD]: Exp-NoExp (LMC)
- ☑ Beef [WTpM] : Ti-NoTi (LMC)

- Soft wheat 2 [WTp]: Ti-NoTi (LMC)
- Vine [WTpD]: Sc-Pe (LUC)
- ☑ Vine [WTpD]: BaS- CoS (LMC)
- Soy [TrW]: Fo-Cr (LUC)

O research group for environmental life cycle & sustainability assessment 🕒 💵

Conclusions 1/2

- Results of case studies
 - LUC & LMC influence climate change impact
 - Occupation & transformation MW&B are both significant
 - The method choice influences LUC results
 - All tested methods are sensitive to practices
 - Accounting of C:N is not neligible (up to +15%)

Conclusions 2/2

- Results of case studies
 - C stocks = very sensitive parameters (up to x 8)
 - Reference states are critical & not easy to find data
 - Regeneration time is influencial & very difficult to assess!
- Recommendations
 - Field data when possible (consistency!)
 - Sensitivity analysis on key factors
 - IPCC Tier 1/degressive at minima, +MW&B
- Perspectives
 - Testing the trade-offs with field data

Thank you for your attention!

Contacts: cecile.bessou@cirad.fr

